The time course of morphological processing in speech production: an ERP study

Peter Hendrix¹ Antoine Tremblay¹ Wieke Tabak² Robert Schreuder² Harald Baayen¹

¹University of Alberta ²Radboud University Nijmegen

June 16, 2009

Outline

- **1** Introduction
- Methods & materials
- 3 Analysis
- Results

Introduction

- Present and past tense verb naming in Dutch
- ERP study

Introduction

Key questions:

- Is the WEAVER model correct in its assumption that there is no competition below the lemma level?
- 2 How staged is processing?
- On we see qualitative processing differences between regular and irregular verbs?

Outline

- **1** Introduction
- Methods & materials
- 3 Analysis
- Results

Methods & materials

- 170 photographs of a young woman enacting verbs
- 4 blocks:
 - familiarization: pictures plus infinitives of verbs are shown
 - acoustic: infinitives of verbs are presented acoustically (not analyzed for current purposes)
 - present tense naming: participants have to name pictures by completing short phrases:
 "Vandaag... [loopt ze]."
 - past tense naming: "Gisteren... [liep ze]."
- Order of present and past tense naming counterbalanced between participants
- 21 participants

Methods & materials

• Example photograph:

7/34

Outline

- Introduction
- Methods & materials
- Analysis
- A Results

Preprocessing

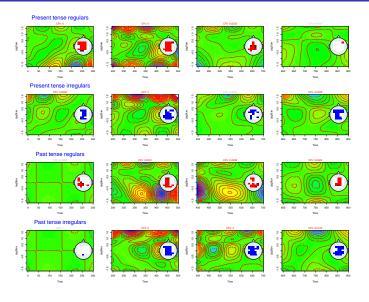
- Reference electrode: RM
- Downsampling to 125 Hz
- Manual ocular and muscle artifact removal
- Wavelet and GAM denoising

Analysis

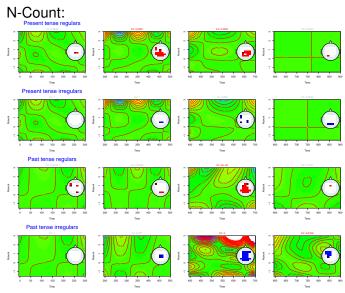
- We used generalized additive models, GAMs
- GAMs allow for the modeling of non-linearities in two or more dimensions
- GAMs are almost twice as powerful as classic t-tests
- GAM models look like this:

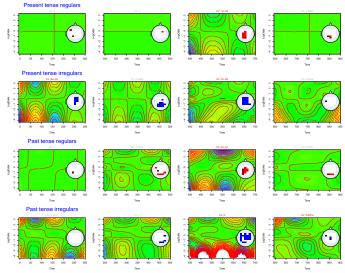
$$y = X\beta + f_i(x_1, x_2, \ldots, x_n) + \ldots + \varepsilon$$

Analysis

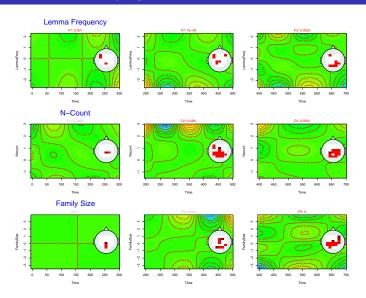

- No prior averaging over items or subjects
- Two-step analysis:
 - Main trends GAM
 - Looks at the main trends of Time, Subject and Item
 - Hierarchical predictor GAMs
 - Linguistic predictors and their interaction with Regularity (e.g.; Lemma Frequency, N-Count, Family Size, Log Odds) are entered one by one in seperate GAMs
 - Least controversial predictors are entered first

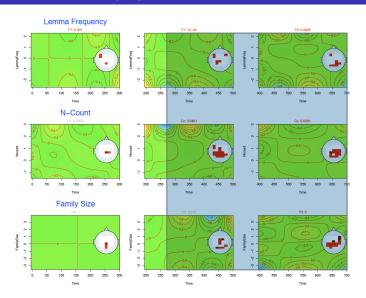
Outline


- Introduction
- Methods & materials
- 3 Analysis
- Results

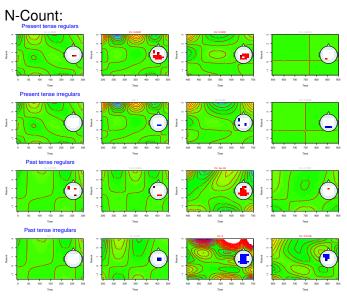

Example predictor: PictureComplexity

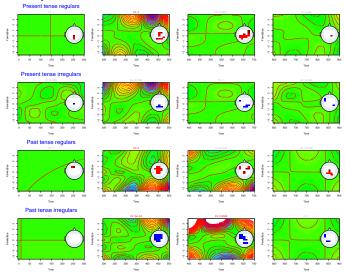
- Key question 1: is the WEAVER model correct in its assumption that there is no competition below the lemma level?
- Predictors of interest:
 - N-Count
 - Log Odds (ratio of present and past tense frequencies)



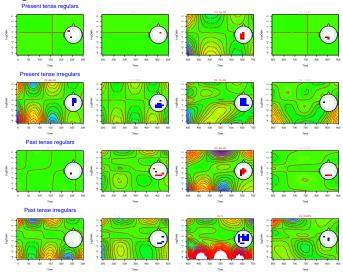

Log Odds:

- We see clear evidence of lexical competition
- N-Count:
 - Oscillations for words with many neighbors
 - Oscillations for both regulars and irregulars
- LogOdds:
 - Oscillations for both regulars and irregulars in both present and past tense
- The assumption of WEAVER that competition is restricted to lemma selection must be wrong


- Key question 2: how staged is processing?
- Predictors of interest:
 - Lemma Frequency
 - N-Count
 - Family Size
- Are the effects of predictors more or less seperated in time or do processing stages substantially overlap?


- The effects of LemmaFrequency, N-Count and FamilySize overlap in time
- Many processes are active simultaneously, for prolonged periods of time
- Processing is highly cascaded

- Key question 3: do we see qualitative processing differences between regular and irregular verbs?
- Predictors of interest:
 - N-Count
 - Family Size
 - LogOdds


- N-Count:
- Large oscillations for past tense irregulars
- Past tense irregulars have dense phonological neighborhoods
- Retrieving words from these dense neighborhoods requires extra work

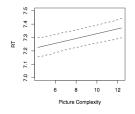
Family Size:

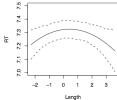
- Family Size:
- Strong oscillations for words with large families for past tense irregulars
- These oscillations are absent for regulars
- Hypothesis: more competition from non-verbal family members for irregulars?
 - e.g.; loop as "gait" or "barrel of a gun"

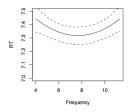
Log Odds:

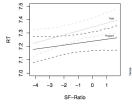
- Log Odds:
- Strong oscillations for past tense irregulars that are relatively frequent in the past tense
- Compensation mechanism for the competition effects of N-Count and FamilySize, allowing for the quick activation of highly frequent irregular past tense forms?

- We see qualitative differences between regular and irregular verb processing, especially in the past tense
- Processing specific to past tense irregulars:
 - Increased neighborhood effects for words with many neighbors
 - More competition from large families
 - Competition balanced by greater inflectional frequency?

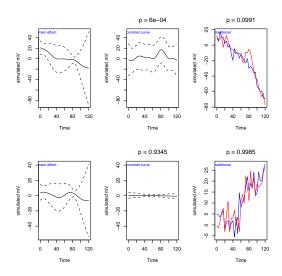

Concluding remarks


- The use of ERPs provides us with information that is not available in traditional reaction times experiments:
 - We see effects that are not visible in the reaction times
 - We have access to the temporal development of processes
- The language production process is subject to much more competition effects than previously thought
- There is substantial overlap of processing stages, with different processes being simultaneously active for prolonged periods of time
- Competitor effects are strongest for (past tense) irregulars


The end



Reaction time effects


GAM simulations

Power and type II error (1000 simulations):

```
effect absent 0.054 0.054 effect present 0.879 0.537
```

- The t-test is carried out for the epoch where the difference is known to be
- The GAM is evaluated without such prior knowledge

GAM simulations

