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Outline

• What is discrimination learning?

• How can we apply discrimination learning to language?

• Examples of applications:

• Baayen et al. (2011)

• Hendrix, Ramscar & Baayen (2015)
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What is discrimination learning?

• “the process by which animals or people learn to make
different responses to different stimuli”

• “learn from the discrepancy between what is expected to
happen and what actually happens”
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Rescorla-Wagner

• Association strength between cues and outcomes
(Rescorla & Wagner, 1972):

V t+1
i = V t

i + ∆V t
i

where

∆V t
i =


0 if ABSENT(Ci , t)

αiβ1

(
λ−

∑
PRESENT(Cj , t)

Vj

)
if PRESENT(Ci , t) & PRESENT(O, t)

αiβ2

(
0−

∑
PRESENT(Cj , t)

Vj

)
if PRESENT(Ci , t) & ABSENT(O, t)

• If a cue is reliable, it’s connection strength will increase

• If a cue is unreliable, it’s connection strength will decrease
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Rescorla-Wagner

• RW equations represent learning over time

• Danks (2003) provided equilibrium equations
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Example

• Fertilization of plants

• Pots

• Two types of fertilizer: red and blue
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Example

Cues Frequency Outcome
red, blue, pot 5 yes
red, pot 10 yes
red, pot 5 no
blue, pot 5 yes
blue, pot 10 no
pot 5 no
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How can we apply discriminative learning to
language?

• Model to learn semantics from orthography

• Cues: letters

• Outcomes: meanings

• RW model learns associations between letters and meanings
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Example

Word Cues Frequency Outcomes
hand h, a, n, d 10 hand, NIL
hands h, a, n, d, s 20 hand, plural
land l, a, n, d 8 land, NIL
lands l, a, n, d, s 3 land, plural
and a, n, d 35 and, NIL
sad s, a, d 18 sad, NIL
as a, s 35 as, NIL
lad l, a, d 102 lad, NIL
lads l, a, d, s 54 lad, plural
lass l, a, s, s 134 lass, NIL

10 | Naive discrimination learning © 2013 Universität Tübingen



Example

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h  −  hand

time

as
so

ci
at

io
n 

st
re

ng
th

asymptote: 1

11 | Naive discrimination learning © 2013 Universität Tübingen



Example
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Example
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Naive discrimination learning

• Apply the same idea on a larger scale

• Association strengths are learned separately for
each outcome

• Implemented in the ndl package for R
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Example

# Load data
load("data/lexicon.rda")
dim(lexicon)
# [1] 1293 4
lexicon$Word[1:20]
# [1] "ace" "age" "aide" "air" "aisle" "ale" "ant" "arc"
# [9] "arch" "arm" "art" "ash" "ass" "axe" "babe" "back"
# [17] "badge" "bag" "bail" "bale"
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Model input

# Library
library(ndl)
# Generate cues
lexicon$Cues = orthoCoding(lexicon$Word, grams=2)
head(lexicon$Cues)
# [1] "#a_ac_ce_e#" "#a_ag_ge_e#" "#a_ai_id_de_e#"
# [4] "#a_ai_ir_r#" "#a_ai_is_sl_le_e#" "#a_al_le_e#"
# Generate outcomes
lexicon$Outcomes = lexicon$Word
head(lexicon$Outcomes)
# [1] "ace" "age" "aide" "air" "aisle" "ale"
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Training

# Estimate association strengths
weights = estimateWeights(lexicon)
round(weights[c("#a","ac","ce","e#"),1:5],4)
# ace age aide air aisle
# #a 0.0094 0.2318 0.0058 0.1959 0.0024
# ac 0.0074 0.0094 0.0013 0.0275 0.0026
# ce 0.0014 0.0010 0.0002 -0.0048 -0.0087
# e# -0.0002 0.0041 -0.0006 -0.0039 0.0082
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Associations

# View association strengths
rev(sort(weights["#q",]))[1:5]
# queen quest guard sense set
# 0.3256534 0.2208410 0.1594041 0.1287231 0.1087365
rev(sort(weights["z#",]))[1:5]
# blitz waltz tree set bin
# 0.34037104 0.14623702 0.10135350 0.07666841 0.07323060
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Activations

• The activation (ai) of a semantic outcome (Oi) given its
input cues (Ck) is defined as:

ai =
∑

j∈{Ck}Vji
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Activations

# Estimate activations
acts = estimateActivations(lexicon,weights)
rownames(acts$activationMatrix) = lexicon$Word
# View activations
rev(sort(acts$activationMatrix["view",]))[1:5]
# view vice crew friend screw
# 0.970707258 0.026417128 0.020631840 0.013063277 0.008228428
rev(sort(acts$activationMatrix["vase",]))[1:5]
# van case base vase set
# 0.91271410 0.55226661 0.13997458 0.06093920 0.04803283
rev(sort(acts$activationMatrix["yolk",]))[1:5]
# youth bulk folk silk mode
# 0.9023739 0.3215203 0.3042634 0.2200161 0.1702520
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Activations

# Define activation function
getActivation = function(word) {

return(acts$activationMatrix[word,word])
}
# Extract activations
lexicon$Acts = as.numeric(sapply(lexicon$Word,getActivation))
head(lexicon[,c("Word","Acts")])
# Word Acts
# 1 ace 0.01804227
# 2 age 0.41010026
# 3 aide 0.03963205
# 4 air 0.48223668
# 5 aisle 0.08761536
# 6 ale 0.01855308
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Reaction times

• Reaction times are inversely proportionally to ai :

RT ∝ log( 1
ai

)
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Reaction times

# Calculate simulated reaction times
lexicon$SimRT = log(1/lexicon$Acts)
# What is the correlation with observed reaction times?
cor(lexicon$RT,lexicon$SimRT)
# [1] 0.5237756
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Simulations

• More frequency words are typically responded to faster

• Can we replicate this frequency effect?
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Simulations

# Model for observed RTs
obs.lm = lm(RT ~ GoogleFrequency,data=lexicon)
# summary(obs.lm)
# ...
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 6.957556 0.017993 386.69 <2e-16 ***
# GoogleFrequency -0.034739 0.001197 -29.03 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# ...
cor(lexicon$RT,lexicon$GoogleFrequency)
# [1] -0.6285029
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Simulations

# Model for simulated RTs
sim.lm = lm(SimRT ~ GoogleFrequency,data=lexicon)
# summary(sim.lm)
# ...
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 12.3172 0.2210 55.72 <2e-16 ***
# GoogleFrequency -0.6662 0.0147 -45.32 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# ...
cor(lexicon$SimRT,lexicon$GoogleFrequency)
# [1] -0.7836124
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Applications

• Baayen et al. (2011)

• Hendrix, Ramscar & Baayen (2015)
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Traditional morphological model

form

morphology

semantics

u s e r #u us se er r#

USER

use er
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Why are morphemes problematic?

• Polysemy

• Example: −s:

• legs

• walks

• Harald’s class

• Example: −er :

• walker

• greater

29 | Naive discrimination learning © 2013 Universität Tübingen



Why are morphemes problematic?

• Gradient semantics:

• Clear cases: −ness (e.g.; greatness)

• Ambiguous cases: −er (e.g.; walker , greater )

• Phonaesthemes: gl− (e.g.; glimmer , gleam, ...)

• “Partial support” (e.g.; −er in archer )
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A-morphous morphology

• “the metaphor of morphology as a formal calculus with
morphemes as basic symbols and morphological rules
defining well-formed strings as well as providing a
semantic interpretation, much as a pocket calculator
interprets 2 + 3 as 5, is inappropriate”

• Conclusion: rage against the morpheme!
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NDR

• Naive Discriminative Reader (Baayen et al. 2011)

• Two layers: orthography and semantics

• No morphological representations

• Fully compositional at the semantic level
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NDR

form

morphology

semantics

u s e r #u us se er r#

USE AGENT
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NDR

• Training data:

• 11,172,554 two and three-word phrases from the
British National Corpus (BNC)

• 26,441,155 word tokens

• 24,710 word types

• Contextual training
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Simulations

• Simple words

• Inflected words

• Derived words

• Pseudo-derived words

• Phrasal effects
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Simple words

• Stimuli: 1289 monomorphemic words (Baayen et al., 2006)

• Observed data: lexical decision latencies from the
English Lexicon Project (ELP)

• Predictors:

• Family Size
• Written frequency, Noun/verb frequency ratio,

Mean bigram frequency
• Inflectional entropy
• Length
• Neighborhood density
• Synonym count
• Prepositional relative entropy
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Simple words

• Correlation between observed and simulated RTs:
r = 0.56,p < 0.0001

• Linear regression model on simulated and observed RTs

37 | Naive discrimination learning © 2013 Universität Tübingen



Simple words

observed coefficients
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Simple words

• The NDR successfully replicates a range of effects in
single word reading

• Effect of morphological family size without any
representations for morphologically complex words

• Effect of inflectional entropy without any representations for
inflected words
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Simulations

• Simple words

• Inflected words

• Derived words

• Pseudo-derived words

• Phrasal effects
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Inflected words

• Stimuli: present and past tense forms of 1,209 regular and
131 irregular monomorphemic verbs

• Observed data: lexical decision latencies from the
English Lexicon Project (ELP)

• Predictors:

• Regularity
• Tense
• Frequency
• Length
• Neighborhood density
• Family size
• Inflectional entropy
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Inflected words

• Past tense represented as PAST

• Present tense not represented explicitly

• Simulated RTs are inversely proportional to a weighted
combination of stem activation and tense activation
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Inflected words

• Correlation between observed and simulated RTs:
r = 0.47,p < 0.0001

• Mixed effects model
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Inflected words

observed coefficients
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Inflected words

• NDR successfully captures effects of length, frequency, family
size and regularity

• NDR incorrectly predicts facilitatory effect of inflectional
entropy

• Training data did not provide information on
aspectual meanings

• Empirical inflectional entropy does not match the learning
experience of the model
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Inflected words
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Inflected words

• Irregular past tenses have independent forms
(e.g.; bring vs brought)

• Results for irregular verbs therefore reflect form frequencies

• Regular past tenses do not have independent forms
(e.g. walk plus PAST )

• The suffix -ed has low cue validity as a past tense marker
(bed , red , greed ...)

• Results for regular verbs therefore reflect present tense
frequencies
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Simulations

• Simple words

• Inflected words

• Derived words

• Pseudo-derived words

• Phrasal effects
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Derived words

• Lexical decision latencies

• Affix productivity

49 | Naive discrimination learning © 2013 Universität Tübingen



Derived words

• Derived words differ more substantially from base meanings
than inflected words

• Example: busy versus business
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Derived words

• Stimuli: 3,003 derived words

• Observed data: lexical decision latencies from the ELP

• Predictors:

• Frequency
• Length
• Frequency base, Family size base
• Family size affix
• Frequency boundary bigram

• Simulated RTs are inversely proportional to a weighted
combination of stem activation and affix activation
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Derived words

• Correlation between observed and simulated RTs:
r = 0.25,p < 0.0001

• Mixed effects model
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Derived words

observed coefficients
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Derived words

• Imbalance between whole-word frequency and
base frequency; model is compositional even for
opaque words (e.g.; business)

• Base frequency and base family size effects without
any morphological parsing

• Whole-word frequency effect without any whole-word
representations

• Boundary bigram frequency effect
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Derived words

• Lexical decision latencies

• Affix productivity
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Derived words

• Affixes differ in their degree of productivity

• Example:

• −th: 16 word types

• −ness: 177 word types

• Measure of productivity:

P = V1
N

where V1 is the number of types with token frequency 1
and N is the total number of tokens
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Derived words
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Derived words

• More productive affixes lead to longer mean RTs

• Can the NDR replicate this effect?
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Derived words
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Derived words

• Why do less productive affixes correspond to shorter RTs?

• Occur in higher frequency words: better by-item learning

• Occur with fewer stems: better cue for these stems
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Simulations

• Simple words

• Inflected words

• Derived words

• Pseudo-derived words

• Phrasal effects
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Pseudo-derived words

• Pseudo-derived words

• Phonaesthemes
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Pseudo-derived words

• Stimuli: 294 prime-target pairs (Rastle et al., 2004)

• Three priming conditions:

• Transparant: dealer-deal

• Opaque: corner-corn

• Orthographic: brothel-broth
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Pseudo-derived words
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Pseudo-derived words

• Interpretation: early form-based decomposition into
morphemes

• Can the NDR model provide an alternative explanation?
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Pseudo-derived words

• Compound cue theory (Ratcliff & McKoon, 1988) to simulate
priming effects

• Semantic decomposition when the suffix is synchronically
active
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Pseudo-derived words

Word Type Lexical Meaning Suffix Meaning
archer opaque ARCHER AGENT
fruitless opaque FRUITLESS WITHOUT
trolley opaque TROLLEY -
employer transparent EMPLOY AGENT
cloudless transparent CLOUD WITHOUT
brothel form BROTHEL -
candidacy form CANDIDACY -
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Pseudo-derived words
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Pseudo-derived words

• Morpho-orthographic effect without morpho-orthographic
parsing

• For a majority of the opaque items, suffixes are
semantically functional

• NDR model therefore learns associations between
orthographic pseudo-suffixes and suffix meanings
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Pseudo-derived words

• Pseudo-derived words

• Phonaesthemes

70 | Naive discrimination learning © 2013 Universität Tübingen



Pseudo-derived words

• Phonaesthemes are frequent form-meaning mappings
in the absence of a stem

• Example: gl in glimmer , gloom, gleam, glow , glare, glint

• Of all word tokens beginning with gl , 59.8% have meanings
related to light or vision
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Pseudo-derived words

• Stimuli: 50 prime-target pairs (Bergen, 2004)

• Five priming conditions:

• Phonaestheme: glimmer-gleam

• Baseline: dial-ugly

• Semantic: collar-button

• Orthographic: druid-drip

• Pseudo-phonaestheme: bleach-blank
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Pseudo-derived words

• Compound cue theory (Ratcliff & McKoon, 1988) to simulate
priming effects

• Phonaesthemes and pseudo-phonaesthemes encoded with
two meanings:

• glimmer → GLIMMER, GL
• gleam→ GLEAM, GL

• Semantically related words encoded with two meanings:

• collar → COLLAR, X1
• button→ BUTTON, X1
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Pseudo-derived words
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Pseudo-derived words

• Morpheme-like effects can emerge without any morphemic
representations
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Simulations

• Simple words

• Inflected words

• Derived words

• Pseudo-derived words

• Phrasal effects
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Phrasal effects

• Phrase frequency effects (Baayen, Hendrix & Ramscar, 2012)

• Phrasal paradigmatic effects
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Phrasal effects

• Arnon & Snider (2010): n-gram frequency effect over and
above component frequency effects

• High frequency phrases are read faster than low frequency
phrases:

• “all over the place”

• “all over the city”

78 | Naive discrimination learning © 2013 Universität Tübingen



Phrasal effects

• NDR successfully simulates the phrase frequency effect

• Contextual learning

• The cues in all , over and the occur more frequently with
place than with city
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Phrasal effects

• Phrase frequency effects (Baayen, Hendrix & Ramscar, 2012)

• Phrasal paradigmatic effects
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Phrasal effects

observed coefficients
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Phrasal effects

• Prepositional relative entropy is a measure of
the prototypicality of a noun’s use of prepositions

• It compares the frequency distribution of prepositions across
all nouns with the frequency distribution of prepositions for
a given noun

• The more similar the distributions the lower the
prepositional relative entropy

• The more dissimilar the distributions the higher the
prepositional relative entropy
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Phrasal effects

Phrase Freq Prob Preposition Freq Prob
on a plant 28608 0.279 on 177908042 0.372
in a plant 52579 0.513 in 253850053 0.531
under a plant 7346 0.072 under 10746880 0.022
above a plant 0 0.000 above 2517797 0.005
through a plant 0 0.000 through 3632886 0.008
behind a plant 760 0.007 behind 3979162 0.008
into a plant 13289 0.130 into 25279478 0.053

Relative entropy =
∑n

i=1 pi log2(pi/qi)
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Pseudo-derived words
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r = 0.87, p < 0.0001
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Phrasal effects

• Prepositional relative entropy influences RTs in isolated
lexical decision

• Higher relative entropy leads to longer RTs

• NDR successfully replicates this effect
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Phrasal effects

• Phrase frequency and phrasal paradigmatic effects
without any phrasal representations

• NDR successfully captures these effects through
contextual learning

• Fits well with a gradient - rather than an absolute - distinction
between morphology and syntax
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Conclusions

• Morphological effects in the absence of morphological
representations

• Consistent with a-morphous views on morphology
(e.g.; Anderson, 1992; Blevins, 2003)
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Conclusions

• The NDR is similar in spirit to the reading part of the triangle
model (Seidenberg & Gonnermann, 2000)

• Both models map orthography onto semantics without
any intermediate morphological representations

• Advantages NDR:

• no back-propagation of error

• no hidden layer units that can covertly represent
morphology
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Conclusions

• Computational engine is based on well-established
discriminative learning algorithm

• Trained on realistic input data

• Parsimonious with respect to the number of representations

• Good fit to a wide range of experimental data
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Applications

• Baayen et al. (2011)

• Hendrix, Ramscar & Baayen (2015)

90 | Naive discrimination learning © 2013 Universität Tübingen



Outline

• Introduction

• NDRa model

• Simulations

• Overall model fit

• Predictor simulations

• Comparison to dual-route architecture

• Pronunciation performance

• Conclusions

91 | Naive discrimination learning © 2013 Universität Tübingen



Outline

• Introduction

• NDRa model

• Simulations

• Overall model fit

• Predictor simulations

• Comparison to dual-route architecture

• Pronunciation performance

• Conclusions

92 | Naive discrimination learning © 2013 Universität Tübingen



Introduction

• Existing models of reading aloud are dual-route models

• Lexical route

• Orthography to phonology mapping is mediated by
lexical representations

• Responsible for reading known words (e.g.; food)

• Sub-lexical route

• Direct orthography to phonology mapping

• Responsible for reading unknown words (e.g.; snood)
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Introduction

snood
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Introduction
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Introduction

• Examples of dual-route models:

• Triangle model (Harm & Seidenberg, 2004)

• DRC model (Coltheart et al., 2001)

• CDP+ model (Perry et al., 2007)
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Triangle model

• Connectionist model

• Three levels of description:

• Orthography

• Phonology

• Semantics
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Triangle model
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Triangle model

• What is represented by hidden layer units?

• Less explanatory power than CDP+ model
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DRC model

• Lexical route: interactive activation model
(McClelland & Rumelhart, 1981)

• Sub-lexical route: grapheme-to-phoneme conversion rules
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DRC model
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DRC model

• Ignores the problem of learning in both routes

• Poor performance compared to newer models of
reading aloud
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CDP+ model

• Successor of DRC model

• Hybrid model:

• Lexical route: interactive activation model

• Sub-lexical route: discriminative learning network
(Zorzi et al., 1998)
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CPD+ model
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CDP+ model

• Performs an order of magnitude better than other existing
models of reading aloud

• Ignores the problem of learning in the lexical route
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Introduction

• Can a learning network improve the performance of
the lexical route?

• Is a sub-lexical route really necessary?
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NDRa

• Extension of the NDR model to reading aloud

• Single-route model: no sub-lexical route
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NDRa model

phonology

lexemes

orthography

visual input
interpretation

speech

print
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NDRa

• Visual input interpretation based on Manhattan city-block
measure (Han & Kamber, 2000)

• More complex visual patterns should take longer to decode

• Complexity of a letter is inversely proportional to the similarity
of that letter to all other letters

• Complexity of a word is the summed complexity of
all component letters
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NDRa

• Two discriminative learning networks:

• Orthography to lexemes

• Lexemes to phonology
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NDRa

• Orthography to lexeme network:

• Original NDR model (Baayen et al., 2011)

• Input units: letters and letter bigrams
(e.g.; #b, be, ea, ar, r#)

• Outcomes: lexemes (e.g.; BEAR)
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NDRa

orthography

lexemes

#b be ea ar r#

BEAR
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NDRa

• Lexeme to phonology network:

• New in the NDRa model

• Input units: lexemes (e.g.; BEAR)

• Outcomes: demi-syllables (e.g.; b8, 8r )
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NDRa

orthography

lexemes

#b be ea ar r#

BEAR
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NDRa

orthography

lexemes

#b be ea ar r#

BEAR

phonology b8 8R
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NDRa

• Orthographic units activate not only the lexeme of
the target word, but also the lexemes of orthographic
neighbors of the target word

• Phonological units are activated by the lexeme of
the target word as well as by the lexemes of the activated
orthographic neighbors
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NDRa

orthography

lexemes

#b be ea ar r#

BEAR

phonology b8 8R
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NDRa

orthography

lexemes

#b be ea ar r#

PEAR BEAR HEAR

phonology p8 b8 8R 7R
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NDRa

• Given the activation at from the target lexemes and
the activations a1,...,n from the lexemes of co-activated
orthographic neighbors, the total activation of
a demi-syllable k is defined as:

ActPhonk = wlex ∗ at +
∑n

i=1 wi ∗ ai

where wi is the amount of activation that lexical neighbor
lexeme i received from the orthography of the target word and
wlex is the relative weight of the activation from the target word
lexeme as compared to the activation from the lexical neighbor
lexemes
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NDRa

• Unknown words and non-words are processed by the same
architecture

• No lexico-semantic representations exist for non-words

• Pronunciation is therefore mediated only by the activations of
orthographic neighbors
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NDRa

orthography

lexemes

#z ze ea ar r#

ZEAL ZEARZEAR HEAR

phonology 7l z7 7R h7
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NDRa

• NDRa models reading aloud of monosyllabic words

• Choice problem: demi-syllables have to be combined in the
right order

• Modeled through the entropy over the activations of the first
and second demi-syllable
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NDRa

• Simulated reaction times are proportional to a weighted
multiplicative integration of:

• the complexity of the visual input

• the activation of the target word lexeme

• the activation of the demi-syllables of the target word

• the entropy over the demi-syllable activations

• RT ∝ Complexityw1

ActLexemew2 ∗ ActPhonw3
1 ∗ ActPhonw4

2 ∗ Hw5

where w1,...,5 are weight parameters that determine the relative
contribution of each source of information
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Simulations

• 2524 mono-syllabic words

• 1822 non-words

• 912 regular non-words

• 910 pseudohomophones (e.g.; "bloo")

• 16 linguistic predictors
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Overall model fit

• Comparison of simulated latencies and observed ELP
naming latencies:

• r = 0.50 for NDRa, 0.49 for CDP+

• AIC much better for NDRa

• Latency distribution much better for NDRa
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Overall model fit
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Outline

• Introduction

• NDRa model

• Simulations

• Overall model fit

• Predictor simulations

• Comparison to dual-route architecture

• Pronunciation performance

• Conclusions
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Predictor simulations

• How well do both models capture the effects of
the 16 linguistic predictors?

• Fit a separate linear model for each predictor

• Compare β coefficients between models for normalized
observed and simulated latencies
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Predictor simulations
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L = length FE = friends-enemies ratio DE = derivational entropy FS = family size
BGM = mean bigram freq. FID = freq. initial diphone NSS = number of simplex synsets FAM = familiarity
BG = summed bigram freq. Cons = consistency Phon = phon. neighb. size Orth = orth. neighb. size
Body = body neighb. size REG = regularity NCS = number of complex synsets Freq = frequency
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Predictor simulations

• Excellent performance for both models

• Nearly perfect correlation with observed β coefficients for
the NDRa model (r = 0.997)

• CDP+ model seems to have problems with the relative
contribution of neighborhood measures

132 | Naive discrimination learning © 2013 Universität Tübingen



Predictor simulations: neighborhood measures

• Effects of three neighborhood measures have been
documented:

• Orthographic neighborhood (e.g.; bear - pear,
bear - hear, bear - bead)

• Phonological neighborhood (e.g.; bear - pear,
bear - hair, bear - bail)

• Body neighborhood (e.g.; bear - pear, bear - wear )
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Predictor simulations: neighborhood measures

• Both models successfully capture the non-linear effects of
all three predictors in isolation fairly well

• What about the non-linear interplay of the neighborhood
measures?

• Find out using tensor product GAMs on simulated and
observed latencies
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Predictor simulations
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Predictor simulations: neighborhood measures

• Neighborhood effects are primarily orthographic neighborhood
effects

• The NDR model correctly predicts the non-linear interplay of
the neighborhood measures
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Predictor simulations: neighborhood measures

orthography

lexemes

#b be ea ar r#

PEAR BEAR HEAR

phonology p8 b8 8R 7R
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Predictor simulations: neighborhood measures

orthography

lexemes
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Predictor simulations: neighborhood measures

orthography

lexemes

#b be ea ar r#

HAIR BEAR RARE

phonology h8 b8 8R r8
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Predictor simulations: neighborhood measures

• Orthographic neighborhood density interacts with frequency
in observed naming latencies

• Only low-frequency words show a neighborhood density
effect

• Can the NDRa capture this interaction?
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Predictor simulations: neighborhood measures
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Predictor simulations: consistency

• The orthography to phonology mapping can be consistent or
inconsistent

• Consistent with pear : bear, wear

• Inconsistent with pear : dear, fear, gear, hear, lear, near, rear,
year, ...

• Higher proportions of consistent word tokens correspond to
shorter naming latencies
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Predictor simulations: consistency

• Capturing consistency effects was a major advancement of
the CPD+ model over the original DRC model

• In the CDP+ model consistency effects arise in the learning
network in the sub-lexical route

• Can the single-route NDRa capture the effect of consistency?
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Predictor simulations: consistency
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Predictor simulations: consistency

orthography

lexemes

#b be ea ar r#

PEAR BEAR HEAR

phonology p8 b8 8R 7R
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Predictor simulations: non-words

• The NDRa successfully replicates a large number of effects
in word naming

• How about non-word naming?
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Predictor simulations: non-words

• Non-words naming effects captured by the NDRa include:

• Non-words are read slower than real words

• Non-word naming latencies increase linearly with length

• Non-words with more orthographic neighbors are
read faster

• A higher proportion of consistent word tokens leads to
shorter non-word naming latencies

• Pseudohomophones are read faster than regular
nonwords
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Predictor simulations: non-words

• [Ramscar]Does the frequency of non-words help predict
naming latencies?[/Ramscar]

• Re-analysis of naming latencies for non-words in
McCann & Besner (1987)

• Frequency is the strongest predictor for non-word
naming latencies
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Predictor simulations: non-words
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Predictor simulations: non-words

• Difference between words and non-words is graded rather
than absolute

• Both words and non-words may or may not have a lexical
representation in the mental lexicon of an individual
language user

• The probability of a lexical representation is a function of
the frequency of a word or non-word

• Fits well with the single-route architecture of the NDRa
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Predictor simulations: non-words

• Simulation: retrain NDRa with Google frequencies
for non-words

• Does the NDRa capture the effect of non-word frequency?
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Predictor simulations: non-words
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Outline

• Introduction

• NDRa model

• Simulations

• Overall model fit

• Predictor simulations

• Comparison to dual-route architecture

• Pronunciation performance

• Conclusions
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Comparison to dual-route architecture

• The single-route NDRa model explains a wide range of
experimental effects in both word and non-word naming

• Would a sub-lexical route further improve the performance of
the NDRa?
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Comparison to dual-route architecture

• Add a sub-lexical route to the NDRa

• Discriminative learning network from orthography to
phonology

• Does this network help explain additional variance in
the observed data?
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Comparison to dual-route architecture

NDRa NDR2
a

Lexical route
ActLexeme 5.011 3.231
ActPhon1 5.989 6.003
ActPhon2 12.259 11.499
H 7.520 7.077
Complexity 18.019 16.851

Non-lexical route
ActPhonSub1 NA 0.398
ActPhonSub1 NA 1.114
HSub NA 1.246
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Comparison to dual-route architecture

• Components of the sub-lexical route do not help explain
additional variance

• Correlation with observed naming latencies remains the same

• Conclusion: the addition of a sub-lexical route does not
improve the performance of the NDRa model
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Outline

• Introduction

• NDRa model
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• Overall model fit
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Pronunciation performance

• Naming latencies reflect bottom-up processes

• Discrimination learning captures bottom-up processing

• Response selection involves top-down processes

• The pre-frontal cortex plays an important role in
response conflict resolution

• Functional architecture?
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Pronunciation performance

• Provisionary checking mechanism

• Filter set of lexemes that activate demi-syllables based on
orthographic overlap with the target word

• Real words: consider activation from target word lexeme only

• Non-words:

• Initial demi-syllable: consider activation from words that
share orthographic onset only

• Second demi-syllable: consider activation from words that
share orthographic rhyme only
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Pronunciation performance

• Word naming performance: 99.21%

• Nonword naming performance: 70.75%

• Lenient scoring criterion: non-word pronunciation is correct if
the orthography-to-phonology mapping for the onset, vowel
and coda exists for a mono-syllabic word in CELEX

• With lenient scoring criterion: 97.69%
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Conclusions

• Discriminative learning works for reading aloud

• A single lexical route is sufficient to explain a wide range of
experimental effects in both word and non-word naming
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Conclusions

• Outstanding issues:

• What is the functional architecture of the selection
mechanism?

• Discrete representations are abstractions from
the neurobiological reality of language processing

• Extension to multi-syllabic words
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General conclusions

• Naive discriminative learning:

• Competitive models of language processing

• Based on a general learning mechanism

• Parsimonious

• Computationally efficient implementation in
the ndl package
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General conclusions

Thank you!
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