

Philosophische Fakultät Seminar für Sprachwissenschaft

Naive discrimination learning

Peter Hendrix

Outline

- What is discrimination learning?
- How can we apply discrimination learning to language?
- Examples of applications:
 - Baayen et al. (2011)
 - Hendrix, Ramscar & Baayen (2015)

What is discrimination learning?

- "the process by which animals or people learn to make different responses to different stimuli"
- "learn from the discrepancy between what is expected to happen and what actually happens"

Rescorla-Wagner

• Association strength between cues and outcomes (Rescorla & Wagner, 1972):

$$V_i^{t+1} = V_i^t + \Delta V_i^t$$

where

$$\Delta V_i^t = \begin{cases} 0 & \text{if } \text{ABSENT}(C_i, t) \\ \alpha_i \beta_1 \left(\lambda - \sum_{\text{PRESENT}(C_i, t)} V_j \right) & \text{if } \text{PRESENT}(C_i, t) & \text{PRESENT}(O, t) \\ \alpha_i \beta_2 \left(0 - \sum_{\text{PRESENT}(C_i, t)} V_j \right) & \text{if } \text{PRESENT}(C_i, t) & \text{ABSENT}(O, t) \end{cases}$$

- If a cue is reliable, it's connection strength will increase
- If a cue is unreliable, it's connection strength will decrease

Rescorla-Wagner

- RW equations represent learning over time
- Danks (2003) provided equilibrium equations

- Fertilization of plants
- Pots
- Two types of fertilizer: red and blue

Cues	Frequency	Outcome
red, blue, pot	5	yes
red, pot	10	yes
red, pot	5	no
blue, pot	5	yes
blue, pot	10	no
pot	5	no

How can we apply discriminative learning to language?

- Model to learn semantics from orthography
- Cues: letters
- Outcomes: meanings
- RW model learns associations between letters and meanings

Word	Cues	Frequency	Outcomes
hand	h, a, n, d	10	hand, NIL
hands	h, a, n, d, s	20	hand, plural
land	l, a, n, d	8	land, NIL
lands	l, a, n, d, s	3	land, plural
and	a, n, d	35	and, NIL
sad	s, a, d	18	sad, NIL
as	a, s	35	as, NIL
lad	l, a, d	102	lad, NIL
lads	l, a, d, s	54	lad, plural
lass	l, a, s, s	134	lass, NIL

Naive discrimination learning

- Apply the same idea on a larger scale
- Association strengths are learned separately for each outcome
- Implemented in the ndl package for R

Model input

```
# Library
library(ndl)
# Generate cues
lexicon$Cues = orthoCoding(lexicon$Word, grams=2)
head(lexicon$Cues)
# [1] "#a_ac_ce_e#" "#a_ag_ge_e#" "#a_ai_id_de_e#"
# [4] "#a_ai_ir_r#" "#a_ai_is_sl_le_e#" "#a_al_le_e#"
# Generate outcomes
lexicon$Outcomes = lexicon$Word
head(lexicon$Outcomes)
# [1] "ace" "age" "aide" "air" "aisle" "ale"
```


Training

#	Est	timate as	ssociat	ion strei	ngths	
<pre>weights = estimateWeights(lexicon)</pre>						
<pre>round(weights[c("#a","ac","ce","e#"),1:5],4)</pre>						
#		ace	age	aide	air	aisle
#	#a	0.0094	0.2318	0.0058	0.1959	0.0024
#	ac	0.0074	0.0094	0.0013	0.0275	0.0026
#	се	0.0014	0.0010	0.0002	-0.0048	-0.0087
#	e#	-0.0002	0.0041	-0.0006	-0.0039	0.0082

Associations

#	View assoc	iation strea	ngths			
<pre>rev(sort(weights["#q",]))[1:5]</pre>						
#	queen	quest	guard	sense	set	
#	0.3256534	0.2208410 0	.1594041 0.	1287231 0.1	087365	
<pre>rev(sort(weights["z#",]))[1:5]</pre>						
#	blitz	waltz	tree	e set	5	bin
#	0.34037104	0.14623702	0.10135350	0.07666841	0.0732	3060

Activations

 The activation (a_i) of a semantic outcome (O_i) given its input cues (C_k) is defined as:

$$a_i = \sum_{j \in \{C_k\}} V_{ji}$$

Activations

Estimate activations

acts = estimateActivations(lexicon,weights) rownames(acts\$activationMatrix) = lexicon\$Word # View activations rev(sort(acts\$activationMatrix["view",]))[1:5] # view vice friend crew screw # 0.970707258 0.026417128 0.020631840 0.013063277 0.008228428 rev(sort(acts\$activationMatrix["vase",]))[1:5] # base van case vase set # 0.91271410 0.55226661 0.13997458 0.06093920 0.04803283 rev(sort(acts\$activationMatrix["yolk",]))[1:5] silk # vouth bulk folk mode # 0.9023739 0.3215203 0.3042634 0.2200161 0.1702520

Activations

```
# Define activation function
getActivation = function(word) {
  return(acts$activationMatrix[word,word])
}
# Extract activations
lexicon$Acts = as.numeric(sapply(lexicon$Word,getActivation))
head(lexicon[,c("Word","Acts")])
#
    Word
               Acts
# 1 ace 0.01804227
# 2 age 0.41010026
# 3 aide 0.03963205
# 4 air 0.48223668
# 5 aisle 0.08761536
# 6 ale 0.01855308
```


Reaction times

• Reaction times are inversely proportionally to a_i :

$$RT \propto \log(\frac{1}{a_i})$$

Reaction times

Calculate simulated reaction times
lexicon\$SimRT = log(1/lexicon\$Acts)
What is the correlation with observed reaction times?
cor(lexicon\$RT,lexicon\$SimRT)
[1] 0.5237756

- More frequency words are typically responded to faster
- Can we replicate this frequency effect?


```
# Model for observed RTs
obs.lm = lm(RT ~ GoogleFrequency, data=lexicon)
# summary(obs.lm)
# ...
# Coefficients:
#
               Estimate Std. Error t value Pr(>|t|)
# (Intercept) 6.957556 0.017993 386.69 <2e-16 ***
# GoogleFrequency -0.034739 0.001197 -29.03 <2e-16 ***
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# ...
cor(lexicon$RT,lexicon$GoogleFrequency)
# [1] -0.6285029
```



```
# Model for simulated RTs
sim.lm = lm(SimRT ~ GoogleFrequency,data=lexicon)
# summary(sim.lm)
# ...
# Coefficients:
# Estimate Std. Error t value Pr(>/t/)
# (Intercept) 12.3172 0.2210 55.72 <2e-16 ***
# GoogleFrequency -0.6662 0.0147 -45.32 <2e-16 ***
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# ...
cor(lexicon$SimRT,lexicon$GoogleFrequency)
# Till o Toposioi</pre>
```

[1] -0.7836124

Applications

- Baayen et al. (2011)
- Hendrix, Ramscar & Baayen (2015)

Traditional morphological model

Why are morphemes problematic?

- Polysemy
- Example: -s:
 - legs
 - walks
 - Harald's class
- Example: -*er*:
 - walker
 - greater

Why are morphemes problematic?

- Gradient semantics:
 - Clear cases: *-ness* (e.g.; *greatness*)
 - Ambiguous cases: *-er* (e.g.; *walker*, *greater*)
 - Phonaesthemes: *gl* (e.g.; *glimmer*, *gleam*, ...)
 - "Partial support" (e.g.; -er in archer)

A-morphous morphology

- "the metaphor of morphology as a formal calculus with morphemes as basic symbols and morphological rules defining well-formed strings as well as providing a semantic interpretation, much as a pocket calculator interprets 2 + 3 as 5, is inappropriate"
- Conclusion: rage against the morpheme!

NDR

- Naive Discriminative Reader (Baayen et al. 2011)
- Two layers: orthography and semantics
- No morphological representations
- Fully compositional at the semantic level

NDR

NDR

- Training data:
 - 11,172,554 two and three-word phrases from the British National Corpus (BNC)
 - 26, 441, 155 word tokens
 - 24,710 word types
- Contextual training

- Simple words
- Inflected words
- Derived words
- Pseudo-derived words
- Phrasal effects

Simple words

- Stimuli: 1289 monomorphemic words (Baayen et al., 2006)
- Observed data: lexical decision latencies from the English Lexicon Project (ELP)
- Predictors:
 - Family Size
 - Written frequency, Noun/verb frequency ratio, Mean bigram frequency
 - Inflectional entropy
 - Length
 - Neighborhood density
 - Synonym count
 - Prepositional relative entropy

Simple words

- Correlation between observed and simulated RTs: r = 0.56, p < 0.0001
- Linear regression model on simulated and observed RTs

Simple words

r = 0.87, p < 0.0001 Mean bigram frequency 1.0 0.8 simulated coefficients 0.0 0.4 0.2 Prepositional relative entropy Neighborhood density Synsets 🔵 Noun/verb frequency ratio -0.2 Length Family Size Written Frequency -0.6 Inflectional entropy -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

observed coefficients

Simple words

- The NDR successfully replicates a range of effects in single word reading
- Effect of morphological family size without any representations for morphologically complex words
- Effect of inflectional entropy without any representations for inflected words

Simulations

- Simple words
- Inflected words
- Derived words
- Pseudo-derived words
- Phrasal effects

- Stimuli: present and past tense forms of 1,209 regular and 131 irregular monomorphemic verbs
- Observed data: lexical decision latencies from the English Lexicon Project (ELP)
- Predictors:
 - Regularity
 - Tense
 - Frequency
 - Length
 - Neighborhood density
 - Family size
 - Inflectional entropy

- Past tense represented as PAST
- Present tense not represented explicitly
- Simulated RTs are inversely proportional to a weighted combination of stem activation and tense activation

- Correlation between observed and simulated RTs: r = 0.47, p < 0.0001
- Mixed effects model

r = 0.90, p = 0.0020

- NDR successfully captures effects of length, frequency, family size and regularity
- NDR incorrectly predicts facilitatory effect of inflectional entropy
- Training data did not provide information on aspectual meanings
- Empirical inflectional entropy does not match the learning experience of the model

- Irregular past tenses have independent forms (e.g.; *bring* vs *brought*)
- Results for irregular verbs therefore reflect form frequencies
- Regular past tenses do not have independent forms (e.g. *walk* plus *PAST*)
- The suffix -ed has low cue validity as a past tense marker (bed, red, greed...)
- Results for regular verbs therefore reflect present tense frequencies

Simulations

- Simple words
- Inflected words
- Derived words
- Pseudo-derived words
- Phrasal effects

- Lexical decision latencies
- Affix productivity

- Derived words differ more substantially from base meanings than inflected words
- Example: *busy* versus *business*

- Stimuli: 3,003 derived words
- Observed data: lexical decision latencies from the ELP
- Predictors:
 - Frequency
 - Length
 - Frequency base, Family size base
 - Family size affix
 - Frequency boundary bigram
- Simulated RTs are inversely proportional to a weighted combination of stem activation and affix activation

- Correlation between observed and simulated RTs: r = 0.25, p < 0.0001
- Mixed effects model

r = 0.61, p < 0.1981

- Imbalance between whole-word frequency and base frequency; model is compositional even for opaque words (e.g.; *business*)
- Base frequency and base family size effects without any morphological parsing
- Whole-word frequency effect without any whole-word representations
- Boundary bigram frequency effect

- Lexical decision latencies
- Affix productivity

- Affixes differ in their degree of productivity
- Example:
 - -th: 16 word types
 - *ness*: 177 word types
- Measure of productivity:

$$P = \frac{V_1}{N}$$

where V1 is the number of types with token frequency 1 and N is the total number of tokens

r = 0.34, p = 0.0029

- More productive affixes lead to longer mean RTs
- Can the NDR replicate this effect?

r = 0.37, p = 0.0009

- Why do less productive affixes correspond to shorter RTs?
- Occur in higher frequency words: better by-item learning
- Occur with fewer stems: better cue for these stems

Simulations

- Simple words
- Inflected words
- Derived words
- Pseudo-derived words
- Phrasal effects

- Pseudo-derived words
- Phonaesthemes

- Stimuli: 294 prime-target pairs (Rastle et al., 2004)
- Three priming conditions:
 - Transparant: dealer-deal
 - Opaque: corner-corn
 - Orthographic: brothel-broth

observed

- Interpretation: early form-based decomposition into morphemes
- Can the NDR model provide an alternative explanation?

- Compound cue theory (Ratcliff & McKoon, 1988) to simulate priming effects
- Semantic decomposition when the suffix is synchronically active

Word	Туре	Lexical Meaning	Suffix Meaning
archer	opaque	ARCHER	AGENT
fruitless	opaque	FRUITLESS	WITHOUT
trolley	opaque	TROLLEY	-
employer	transparent	EMPLOY	AGENT
cloudless	transparent	CLOUD	WITHOUT
brothel	form	BROTHEL	-
candidacy	form	CANDIDACY	-

simulated

- Morpho-orthographic effect without morpho-orthographic parsing
- For a majority of the opaque items, suffixes are semantically functional
- NDR model therefore learns associations between orthographic pseudo-suffixes and suffix meanings

- Pseudo-derived words
- Phonaesthemes

- Phonaesthemes are frequent form-meaning mappings in the absence of a stem
- Example: gl in glimmer, gloom, gleam, glow, glare, glint
- Of all word tokens beginning with *gl*, 59.8% have meanings related to light or vision

- Stimuli: 50 prime-target pairs (Bergen, 2004)
- Five priming conditions:
 - Phonaestheme: glimmer-gleam
 - Baseline: dial-ugly
 - Semantic: collar-button
 - Orthographic: druid-drip
 - Pseudo-phonaestheme: bleach-blank

- Compound cue theory (Ratcliff & McKoon, 1988) to simulate priming effects
- Phonaesthemes and pseudo-phonaesthemes encoded with two meanings:
 - glimmer \rightarrow GLIMMER, GL
 - gleam \rightarrow GLEAM, GL
- Semantically related words encoded with two meanings:
 - collar \rightarrow COLLAR, X1
 - button \rightarrow BUTTON, X1

r = 0.97, p = 0.0061

• Morpheme-like effects can emerge without any morphemic representations

Simulations

- Simple words
- Inflected words
- Derived words
- Pseudo-derived words
- Phrasal effects

- Phrase frequency effects (Baayen, Hendrix & Ramscar, 2012)
- Phrasal paradigmatic effects

- Arnon & Snider (2010): n-gram frequency effect over and above component frequency effects
- High frequency phrases are read faster than low frequency phrases:
 - "all over the place"
 - "all over the city"

- NDR successfully simulates the phrase frequency effect
- Contextual learning
- The cues in *all*, *over* and *the* occur more frequently with *place* than with *city*

- Phrase frequency effects (Baayen, Hendrix & Ramscar, 2012)
- Phrasal paradigmatic effects

r = 0.87, p < 0.0001 • Mean bigra

- Prepositional relative entropy is a measure of the prototypicality of a noun's use of prepositions
- It compares the frequency distribution of prepositions across all nouns with the frequency distribution of prepositions for a given noun
- The more similar the distributions the lower the prepositional relative entropy
- The more dissimilar the distributions the higher the prepositional relative entropy

Phrase	Freq	Prob	Preposition	Freq	Prob
on a plant	28608	0.279	on	177908042	0.372
in a plant	52579	0.513	in	253850053	0.531
under a plant	7346	0.072	under	10746880	0.022
above a plant	0	0.000	above	2517797	0.005
through a plant	0	0.000	through	3632886	0.008
behind a plant	760	0.007	behind	3979162	800.0
into a plant	13289	0.130	into	25279478	0.053

Relative entropy = $\sum_{i=1}^{n} p_i \log_2(p_i/q_i)$

r = 0.87, p < 0.0001

- Prepositional relative entropy influences RTs in isolated lexical decision
- Higher relative entropy leads to longer RTs
- NDR successfully replicates this effect

- Phrase frequency and phrasal paradigmatic effects without any phrasal representations
- NDR successfully captures these effects through contextual learning
- Fits well with a gradient rather than an absolute distinction between morphology and syntax

Conclusions

- Morphological effects in the absence of morphological representations
- Consistent with a-morphous views on morphology (e.g.; Anderson, 1992; Blevins, 2003)

Conclusions

- The NDR is similar in spirit to the reading part of the triangle model (Seidenberg & Gonnermann, 2000)
- Both models map orthography onto semantics without any intermediate morphological representations
- Advantages NDR:
 - no back-propagation of error
 - no hidden layer units that can covertly represent morphology

Conclusions

- Computational engine is based on well-established discriminative learning algorithm
- Trained on realistic input data
- Parsimonious with respect to the number of representations
- Good fit to a wide range of experimental data

Applications

- Baayen et al. (2011)
- Hendrix, Ramscar & Baayen (2015)

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
 - Pronunciation performance
- Conclusions

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
 - Pronunciation performance
- Conclusions

- Existing models of reading aloud are dual-route models
- Lexical route
 - Orthography to phonology mapping is mediated by lexical representations
 - Responsible for reading known words (e.g.; *food*)
- Sub-lexical route
 - Direct orthography to phonology mapping
 - Responsible for reading unknown words (e.g.; *snood*)

snood

94 | Naive discrimination learning

© 2013 Universität Tübingen

- Examples of dual-route models:
 - Triangle model (Harm & Seidenberg, 2004)
 - DRC model (Coltheart et al., 2001)
 - CDP+ model (Perry et al., 2007)

Triangle model

- Connectionist model
- Three levels of description:
 - Orthography
 - Phonology
 - Semantics

Triangle model

Triangle model

- What is represented by hidden layer units?
- Less explanatory power than CDP+ model

DRC model

- Lexical route: interactive activation model (McClelland & Rumelhart, 1981)
- Sub-lexical route: grapheme-to-phoneme conversion rules

DRC model

DRC model

- Ignores the problem of learning in both routes
- Poor performance compared to newer models of reading aloud

CDP+ model

- Successor of DRC model
- Hybrid model:
 - Lexical route: interactive activation model
 - Sub-lexical route: discriminative learning network (Zorzi et al., 1998)

CPD+ model

CDP+ model

- Performs an order of magnitude better than other existing models of reading aloud
- Ignores the problem of learning in the lexical route

- Can a learning network improve the performance of the lexical route?
- Is a sub-lexical route really necessary?

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
 - Pronunciation performance
- Conclusions

NDRa

- Extension of the NDR model to reading aloud
- Single-route model: no sub-lexical route

NDRa model

- Visual input interpretation based on Manhattan city-block measure (Han & Kamber, 2000)
- More complex visual patterns should take longer to decode
- Complexity of a letter is inversely proportional to the similarity of that letter to all other letters
- Complexity of a word is the summed complexity of all component letters

- Two discriminative learning networks:
 - Orthography to lexemes
 - Lexemes to phonology

- Orthography to lexeme network:
 - Original NDR model (Baayen et al., 2011)
 - Input units: letters and letter bigrams (e.g.; #b, be, ea, ar, r#)
 - Outcomes: lexemes (e.g.; *BEAR*)

- Lexeme to phonology network:
 - New in the NDRa model
 - Input units: lexemes (e.g.; *BEAR*)
 - Outcomes: demi-syllables (e.g.; *b8, 8r*)

- Orthographic units activate not only the lexeme of the target word, but also the lexemes of orthographic neighbors of the target word
- Phonological units are activated by the lexeme of the target word as well as by the lexemes of the activated orthographic neighbors

 Given the activation a_t from the target lexemes and the activations a_{1,...,n} from the lexemes of co-activated orthographic neighbors, the total activation of a demi-syllable k is defined as:

ActPhon_k =
$$w_{lex} * a_t + \sum_{i=1}^{n} w_i * a_i$$

where w_i is the amount of activation that lexical neighbor lexeme *i* received from the orthography of the target word and w_{lex} is the relative weight of the activation from the target word lexeme as compared to the activation from the lexical neighbor lexemes

- Unknown words and non-words are processed by the same architecture
- No lexico-semantic representations exist for non-words
- Pronunciation is therefore mediated only by the activations of orthographic neighbors

- NDRa models reading aloud of monosyllabic words
- Choice problem: demi-syllables have to be combined in the right order
- Modeled through the entropy over the activations of the first and second demi-syllable

- Simulated reaction times are proportional to a weighted multiplicative integration of:
 - the complexity of the visual input
 - the activation of the target word lexeme
 - the activation of the demi-syllables of the target word
 - the entropy over the demi-syllable activations

•
$$RT \propto \frac{\text{Complexity}^{w^1}}{\text{ActLexeme}^{w_2} * \text{ActPhon}_1^{w_3} * \text{ActPhon}_2^{w_4} * \text{H}^{w_5}}$$

where $w_{1,...,5}$ are weight parameters that determine the relative contribution of each source of information

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
 - Pronunciation performance
- Conclusions

Simulations

- 2524 mono-syllabic words
- 1822 non-words
 - 912 regular non-words
 - 910 pseudohomophones (e.g.; "bloo")
- 16 linguistic predictors

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
 - Pronunciation performance
- Conclusions

Overall model fit

- Comparison of simulated latencies and observed ELP naming latencies:
 - r = 0.50 for NDRa, 0.49 for CDP+
 - AIC much better for NDRa
 - Latency distribution much better for NDRa

Overall model fit

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
 - Pronunciation performance
- Conclusions

- How well do both models capture the effects of the 16 linguistic predictors?
- Fit a separate linear model for each predictor
- Compare β coefficients between models for normalized observed and simulated latencies

- Excellent performance for both models
- Nearly perfect correlation with observed β coefficients for the NDRa model (r = 0.997)
- CDP+ model seems to have problems with the relative contribution of neighborhood measures

- Effects of three neighborhood measures have been documented:
 - Orthographic neighborhood (e.g.; *bear pear*, *bear hear*, *bear bead*)
 - Phonological neighborhood (e.g.; bear pear, bear - hair, bear - bail)
 - Body neighborhood (e.g.; *bear pear*, *bear wear*)

- Both models successfully capture the non-linear effects of all three predictors in isolation fairly well
- What about the non-linear interplay of the neighborhood measures?
- Find out using tensor product GAMs on simulated and observed latencies

- Neighborhood effects are primarily orthographic neighborhood effects
- The NDR model correctly predicts the non-linear interplay of the neighborhood measures

- Orthographic neighborhood density interacts with frequency in observed naming latencies
- Only low-frequency words show a neighborhood density effect
- Can the NDRa capture this interaction?

Predictor simulations: consistency

- The orthography to phonology mapping can be consistent or inconsistent
- Consistent with *pear*: *bear*, *wear*
- Inconsistent with *pear*: *dear*, *fear*, *gear*, *hear*, *lear*, *near*, *rear*, *year*, ...
- Higher proportions of consistent word tokens correspond to shorter naming latencies

Predictor simulations: consistency

- Capturing consistency effects was a major advancement of the CPD+ model over the original DRC model
- In the CDP+ model consistency effects arise in the learning network in the sub-lexical route
- Can the single-route NDRa capture the effect of consistency?

Predictor simulations: consistency

Predictor simulations: consistency

- The NDRa successfully replicates a large number of effects in word naming
- How about non-word naming?

- Non-words naming effects captured by the NDRa include:
 - Non-words are read slower than real words
 - Non-word naming latencies increase linearly with length
 - Non-words with more orthographic neighbors are read faster
 - A higher proportion of consistent word tokens leads to shorter non-word naming latencies
 - Pseudohomophones are read faster than regular nonwords

- [Ramscar]Does the frequency of non-words help predict naming latencies?[/Ramscar]
- Re-analysis of naming latencies for non-words in McCann & Besner (1987)

- [Ramscar]Does the frequency of non-words help predict naming latencies?[/Ramscar]
- Re-analysis of naming latencies for non-words in McCann & Besner (1987)
- Frequency is the strongest predictor for non-word naming latencies

- Difference between words and non-words is graded rather than absolute
- Both words and non-words may or may not have a lexical representation in the mental lexicon of an individual language user
- The probability of a lexical representation is a function of the frequency of a word or non-word
- Fits well with the single-route architecture of the NDRa

- Simulation: retrain NDRa with Google frequencies for non-words
- Does the NDRa capture the effect of non-word frequency?

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
 - Pronunciation performance
- Conclusions

- The single-route NDRa model explains a wide range of experimental effects in both word and non-word naming
- Would a sub-lexical route further improve the performance of the NDRa?

- Add a sub-lexical route to the NDRa
- Discriminative learning network from orthography to phonology
- Does this network help explain additional variance in the observed data?

	NDR _a	NDR_a^2
Lexical route		
ActLexeme	5.011	3.231
ActPhon ₁	5.989	6.003
ActPhon ₂	12.259	11.499
Н	7.520	7.077
Complexity	18.019	16.851
Non-lexical route		
ActPhonSub ₁	NA	0.398
ActPhonSub ₁	NA	1.114
HSub	NA	1.246

- Components of the sub-lexical route do not help explain additional variance
- Correlation with observed naming latencies remains the same
- Conclusion: the addition of a sub-lexical route does not improve the performance of the NDRa model

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
 - Pronunciation performance
- Conclusions

Pronunciation performance

- Naming latencies reflect bottom-up processes
- Discrimination learning captures bottom-up processing
- Response selection involves top-down processes
- The pre-frontal cortex plays an important role in response conflict resolution
- Functional architecture?

Pronunciation performance

- Provisionary checking mechanism
- Filter set of lexemes that activate demi-syllables based on orthographic overlap with the target word
- Real words: consider activation from target word lexeme only
- Non-words:
 - Initial demi-syllable: consider activation from words that share orthographic onset only
 - Second demi-syllable: consider activation from words that share orthographic rhyme only

Pronunciation performance

- Word naming performance: 99.21%
- Nonword naming performance: 70.75%
- Lenient scoring criterion: non-word pronunciation is correct if the orthography-to-phonology mapping for the onset, vowel and coda exists for a mono-syllabic word in CELEX
- With lenient scoring criterion: 97.69%

Outline

- Introduction
- NDRa model
- Simulations
 - Overall model fit
 - Predictor simulations
 - Comparison to dual-route architecture
- Conclusions

Conclusions

- Discriminative learning works for reading aloud
- A single lexical route is sufficient to explain a wide range of experimental effects in both word and non-word naming

Conclusions

- Outstanding issues:
 - What is the functional architecture of the selection mechanism?
 - Discrete representations are abstractions from the neurobiological reality of language processing
 - Extension to multi-syllabic words

General conclusions

- Naive discriminative learning:
 - Competitive models of language processing
 - Based on a general learning mechanism
 - Parsimonious
 - Computationally efficient implementation in the ndl package

General conclusions

Thank you!