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Introduction to GAMs: introduction

Central question: how to analyze ERPs in language processing
studies?
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Introduction to GAMs: introduction

Traditional analyses:
dichotomize predictors
look at ERPs in a piecemeal fashion
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Introduction to GAMs: introduction

Problems:
dichotomizing predictors can mask non-linear effects in the
predictor dimension
piecemeal analysis over time can mask or obscure non-linear
effects in the time dimension
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Introduction to GAMs: GAMs

Proposed analysis method: generalized additive models
(Hastie & Tibshirani, 1986; Wood, 2006)
GAMs are a non-linear extension of simple regression models
GAM structure:

y = Xβ + fi(x1, x2, . . . , xn) + . . . + ε

fi are smooth functions without any predefined structure
x1 to xn are covariates
GAMs are capable of capturing non-linearities in both the time and
predictor dimension
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Introduction to GAMs: an example

A simulation example: an oscillatory effect of Word Length over
time (0-1000 ms)
Word Length: a numerical variable that ranges from 3 to 12
Low values of Word Length: oscillatory activity at 4 Hz
High values of Word Length: oscillatory activity at 7 Hz
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Introduction to GAMs: an example
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Introduction to GAMs: an example
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Introduction to GAMs: an example

The nature of oscillations is not always easily interpretable in the
time domain
To overcome this a discrete Fourier transform (DFT) can be used
A DFT transforms the signal from the time domain to the
frequency domain

Peter Hendrix (UT) ERP with GAMs September 26, 2011 12 / 52



Introduction to GAMs: an example
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Introduction to GAMs: an example

Real-life signals are not as clean as the oscillations in the previous
simulation
How do GAMs perform with extremely noisy signals?
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Introduction to GAMs: an example
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Introduction to GAMs: introduction
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Introduction to GAMs: introduction
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Introduction to GAMs: introduction

GAMs are capable of capturing non-linearities in two dimensions
GAMs perform well with noisy signals
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Outline

1 Introduction to generalized additive models

2 An application: prepositional phrases
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Prepositional phrases: introduction

Experimental items:
Primes: preposition + definite article (e.g.; “in the”, “above the”)
Targets: photographs of nouns (e.g.; STRAWBERRY, SAW)

Task: picture naming
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Prepositional phrases: example item

+
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Prepositional phrases: example item

on the
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Prepositional phrases: example item

+

Peter Hendrix (UT) ERP with GAMs September 26, 2011 23 / 52



Prepositional phrases: example item

Peter Hendrix (UT) ERP with GAMs September 26, 2011 24 / 52



Prepositional phrases: example item

+

Peter Hendrix (UT) ERP with GAMs September 26, 2011 25 / 52



Prepositional phrases: example item

in the
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Prepositional phrases: example item
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Prepositional phrases: example item
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Prepositional phrases: experimental questions

Two experimental questions:
1 What is the nature of phrase frequency effects?
2 Do we find a prototypicality effect for prepositional phrases?
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Prepositional phrases: question 1

What is the nature of phrase frequency effects?
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Prepositional phrases: question 1

Phrasal decision latencies are shorter for high frequency phrases
than for low frequency phrases
The nature of this effect is unclear
Hypothesis 1: whole phrase storage
Under this hypothesis similar ERP signatures for word and phrase
frequency effects are expected
Hypothesis 2: decomposition
Under this hypothesis qualitatively different ERP signatures for
word and phrase frequency effects are expected
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Prepositional phrases: question 1

Three predictors:
1 Preposition frequency
2 Word frequency
3 Phrase frequency

All frequencies were derived from the Google 1T n-gram data
Phrases were selected at the quantiles of the phrase frequency
distribution for a given noun
Example for “saw”:

“into the saw” (frequency: 2061, 25% of phrase frequency
distribution)
“from the saw” (5358, 50 % of ...)
“to the saw” (9781, 75% of ...)
“with the saw” (20464, 100% of...)

Number of phrases: 272
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Prepositional phrases: question 1

All frequencies were log-transformed to remove right-ward skew
Phrase frequency was decorrelated from word and preposition
frequency and did not correlate significantly with component
bigram frequencies
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Prepositional phrases: question 2

Do we find a prototypicality effect for prepositional phrases?
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Prepositional phrases: question 2

Effects of prototypicality have been documented at the word level
We used the Relative Entropy measure to find out if there is
a similar prototypicality effect for prepositional phrases
Relative Entropy indicates how similar the distribution of
prepositional phrase frequencies for a given noun is to
the distribution of preposition frequencies in the language as a
whole
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Prepositional phrases: question 2

Given estimated probabilities p (relative frequencies) of
prepositional phrases for a given noun and estimated
probabilities q (relative frequencies) of prepositions across all
nouns, relative entropy is defined as

Relative Entropy =
n∑

i=1

(pi ∗ log2 (pi/qi))

where n is the number of prepositions in the language
Values for Relative Entropy are low for nouns with prototypical
prepositional phrase frequency distributions and high for nouns
with non-prototypical prepositional phrase frequency distributions
Relative Entropy was decorrelated from word and phrase
frequency
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Prepositional phrases: experiment setup

Participants: 30 right-handed native speakers of English
(mean age: 20.4)
ERPs recorded at 32 electrodes (international 10/20 system)
Preprocessing:

downsampling (to 256 Hz)
band-pass filter (0.5 to 50 Hz)
baseline correction (-200 to 0 ms interval)
re-referencing to the average of the left and right mastoids
eye-movement and eye-blink correction
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Prepositional phrases: pre-analysis

12 items corresponding to 3 problematic photographs were
excluded from the data
Incorrect naming responses were removed from the data (7.61%)
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Prepositional phrases: analysis

Analysis method: two stratum hierarchical generalized additive
models (GAMs)
Stratum 1: a GAM modeling the main trend over time as well as
the effects of Trial, Participant and Item
Stratum 2: predictor GAMs on the residuals of the stratum 1 model
to look at the effect of predictors over time
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Prepositional phrases: analysis

GAM models were fitted on 300 ms time windows for
computational reasons

Time windows: 0-300, 200-500, 400-700 and 600-900 ms
100 ms overlap between time windows to verify consistency of
results

Bonferroni-corrected significance level of 0.0004 (32 electrodes, 4
epochs)

Peter Hendrix (UT) ERP with GAMs September 26, 2011 40 / 52



Prepositional phrases: results

What is the nature of phrase frequency effects?
Hypothesis 1: whole phrase storage
Similar ERP signatures for word and phrase frequency effects are
expected
Hypothesis 2: decomposition
Different ERP signatures for word and phrase frequency effects
are expected
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Prepositional phrases: results
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Prepositional phrases: results
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Prepositional phrases: results
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Prepositional phrases: results

The ERP signatures for preposition and word frequency
are characterized by theta range oscillations
The ERP signature for phrase frequency shows an
inverse U-shaped effect that persists over time
This suggests distinct cognitive mechanisms underlie the effects
for word frequency and phrase frequency
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Prepositional phrases: results

These results do not fit well with an explanation of phrase
frequency effects in terms of whole phrase representations
The results fit more readily with a decompositional view
An example of such a model is the
Naive Discriminative Reader (NDR) model
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Prepositional phrases: results

The NDR is a full decomposition model that directly maps
orthographic input features onto meanings, without positing
representations for morphemes, complex words or phrases
Nonetheless, the NDR correctly simulates the whole phrase
frequency effects reported in the lexical decision literature
In the NDR phrase frequency effects emerge as a result of
integration over decomposed meanings
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Prepositional phrases: results

Do we find a prototypicality effect for prepositional phrases?
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Prepositional phrases: results
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Prepositional phrases: results

The ERP signature for Relative Entropy shows theta range
oscillations related to prepositional phrase prototypicality
Two qualitatively different processes seem to be at work:

1 An early posterior effect
2 A late left-anterior effect

The early effect may be related to lexical access, whereas
the later effect could reflect a higher level evaluation process
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Summary

GAMs provide an analysis method that retains the richness of
information in ERP signals
GAMs reliably capture non-linearities in both the time and the
predictor dimension
GAMs perform well with noisy signals
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