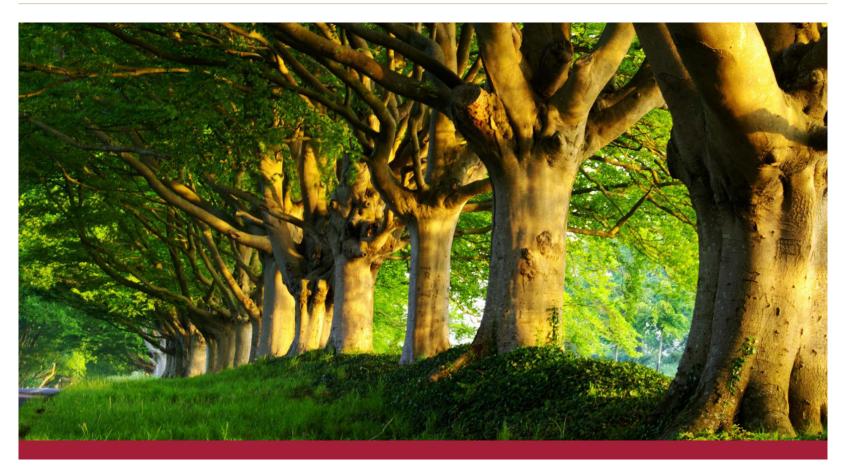


Philosophische Fakultät Seminar für Sprachwissenschaft



Gradient boosting machines

Peter Hendrix

Load Chinese naming data
load("data/datachinesenaming.rda")

nrow(data)

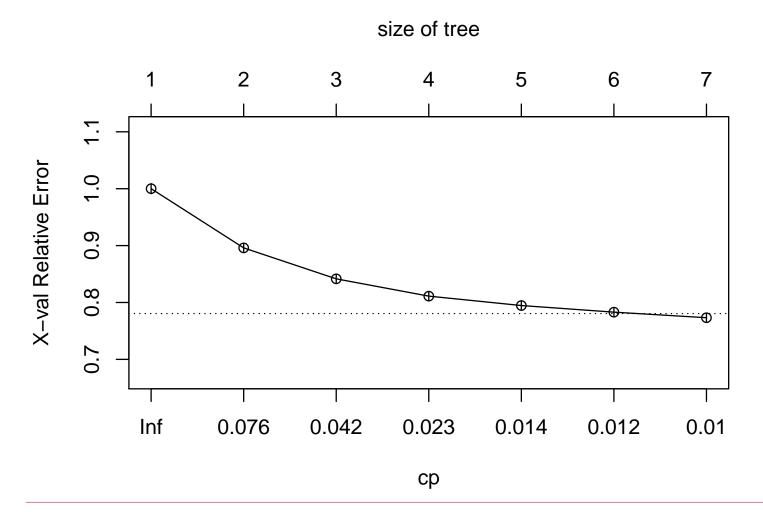
[1] 30665

ncol(data)

[1] 76


```
library(rpart)
rpart = rpart(RTinv ~ ..., data = data)
```

```
plotcp(rpart)
```

rpartpruned = prune(rpart, cp = 0.012)

```
cor(datatmp$RTinv, predict(rpartpruned))^2
# 0.2204487
```



```
cor(datatmp$RTinv, predict(ctree))^2
# 0.3482986
```


Ensembles

Why plant a single tree if you can grow a forest?

Ensemble methods

- Examples:
 - bagging
 - random forest
 - boosting

Bagging

- Bootstrap aggregating
- Build large number of trees on samples of the data

Random forest

- Consider only a random subset of *N* predictors out of all predictors *P* for each split
- $N = \sqrt{P}$ tends to work well
- Random forests are identical to bagging if N is equal to P

Random forest

- Trees are grown sequentially
- Each tree is an expert on the errors of its predecessor

Gradient Boosting Machine: step 1

• Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all *i* in the data

Gradient Boosting Machine: step 2

- Repeat for *b* = 1, 2, ..., *B*:
 - Fit a tree \hat{f}^b to the residuals
 - Update \hat{f} by adding a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^{b}(x)$$

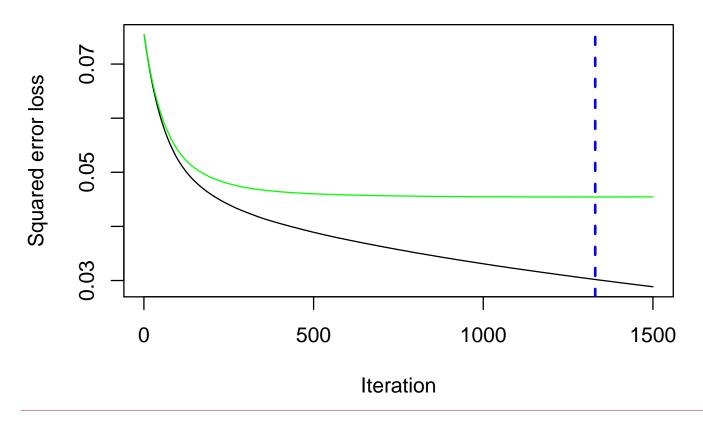
• Update the residuals:

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x)$$

Gradient Boosting Machine: step 3

• Output the gbm model:
$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^{b}(x)$$

- Parameters:
 - Number of trees
 - Shrinkage (λ)
 - Number of splits in the tree (interaction depth)



data\$Predict = predict(gbm, n.trees = 1330)
cor(data\$Predict, data\$RTinv)^2
0.6193783

summary(gbm)

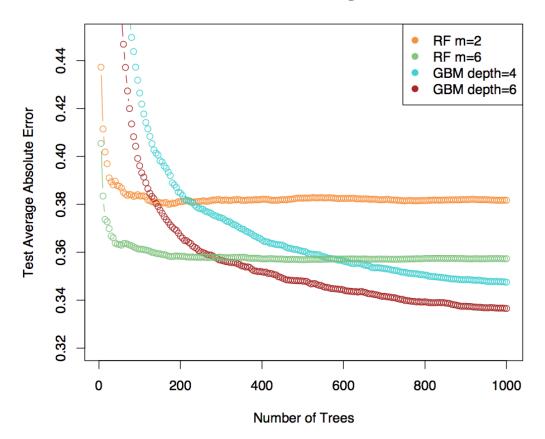
InitialPhoneme LogChar1FamFreqZ LogChar1FreqZ Session LogFrequencyZ FinalPhoneme LogChar1FriendsZ LogChar1StrokesZ

• • •

Total

rel.inf 20.675422635 7.848921035 7.674469913 6.187537938 5.303294727 3.253571436 2.834133767 2.464799656

California Housing Data



- Extremely competitive performance
- Overfitting not much of an issue
- Interpretation more limited than for regression models
- Computationally expensive due to sequential fitting