

Philosophische Fakultät Seminar für Sprachwissenschaft

Mathematics for Linguists: Memory Based Learning

Peter Hendrix

Memory Based Learning

- What is Memory Based Learning?
- Classification technique based on the idea that intelligent behavior can be obtained by analogical reasoning, rather than by the application of abstract mental rules
- Alternative names: similarity-based learning, exemplar-based learning, instance based learning, lazy learning

Memory Based Learning

- Memory Based Learning models take a set of examples (features-value patterns and associated outcome classes) as input and produce a classifier that predicts class membership of new, previously unseen input patterns on the basis of similarity to examples in the training set
- Application domain: classification tasks with symbolic or numeric features and discrete, non-continuous classes

TiMBL

- TiMBL: Tilburg Memory Based Learner (Daelemans et al. (2010))
- Download from: http://ilk.uvt.nl/timbl
- Based on k-Nearest Neighbors (k-NN) algorithm

- Store all instances encountered during training in memory
- Present new instance during test
- Find the k most similar example(s) in the training data using some distance metric Δ(X, Y)
- Assign the most frequent class within the set of most similar example(s) (the *k*-nearest neighbours) to the new instance

8 | Memory based learning

- Note: usually k refers to the number of neighbors taken into account
- In TiMBL k is the number of nearest distances taken into account
- With k = 1, therefore, TiMBL's nearest neighbor set can contain multiple training instances that are equally distant to the test stimulus

- 1) Define classification task
- 2) Learning phase
- 3) Performance phase:
 - a) Choose distance metric
 - b) Set *k* (number of nearest distances)
 - c) Choose how to extrapolate from nearest neighbors
 - d) Run classifier

- 1) Define classification task
- 2) Learning phase
- 3) Performance phase:
 - a) Choose distance metric
 - b) Set *k* (number of nearest distances)
 - c) Choose how to extrapolate from nearest neighbors
 - d) Run classifier

- Definition of classification task is driven by (linguistic) theory
- Three steps:
 - Define outcome classes: what do we want to predict?
 - Define features: which information might be relevant to predict the outcome classes?
 - Define feature-values: how do we want to encode the features?

- Example from TiMBL reference guide: Dutch diminutive suffix
- Dutch diminutives are formed by attaching a diminutive suffix to the base form of a noun
- The suffix shows variation in its surface form (allomorphy)

Dutch diminutive suffix allomorphy:

noun	english	form	suffix	class
huis	house	huisje	-je	J
man	man	mannetje	-etje	Ε
raam	window	raampje	-pje	Ρ
woning	house	woninkje	-kje	K
baan	job	baantje	-tje	Т

- Outcome classes: form of diminutive suffix
- Features (for each of last three syllables):
 - Stress
 - Onset
 - Nucleus
 - Coda

Feature encoding:

syllable			syllable			syllable			е	outc.	noun	english		
+	b	i	=	-	Ζ	@	=	-	m	Α	nt	J	biezenmand	bulrush basket
=	=	=	=	=	=	=	=	+	b		χ	E	big	piglet
=	=	=	=	+	b	Κ	=	-	b	а	n	T	baan	job
=	=	=	=	+	b	Κ	=	-	b	@		T	bijbel	bible

- 1) Define classification task
- 2) Learning phase
- 3) Performance phase:
 - a) Choose distance metric
 - b) Set *k* (number of nearest distances)
 - c) Choose how to extrapolate from nearest neighbors
 - d) Run classifier

- During the learning phase the training data are stored in memory
- Importantly, no abstraction or restructuring of information occurs

Input format:

```
# =,=,=,=,+,k,e,=,-,r,@,1,T
# =,=,=,=,-,fr,i,=,+,z,I,n,E
# =,=,=,=,=,=,=,+,sn,},f,J
# =,=,=,=,+,1,I,=,-,x,a,m,P
# =,=,=,=,+,k,E,rst,-,k,I,nt,J
# +,r,i,=,-,j,a,=,-,b,e,lt,J
# =,=,=,=,-,v,I,n,+,j,E,t,J
# -,b,O,=,+,t,i,=,-,n,@,=,T
# +,b,A,k,-,st,O,=,-,p,@,r,T
# ...
# 2999 lines
```


- 1) Define classification task
- 2) Learning phase
- 3) Performance phase:
 - a) Choose distance metric
 - b) Set *k* (number of nearest distances)
 - c) Choose how to extrapolate from nearest neighbors
 - d) Run classifier

- During the performance phase new instances are classified based on the training data
- Prior to running the classifier we have to set a number of technical parameters

- 1) Define classification task
- 2) Learning phase
- 3) Performance phase:
 - a) Choose distance metric
 - b) Set *k* (number of nearest distances)
 - c) Choose how to extrapolate from nearest neighbors
 - d) Run classifier

• The most basic distance metric is the overlap metric:

$$\Delta(X, Y) = \sum_{i=1}^n \delta(x_i, y_i)$$

where:

$$\delta(x_i, y_i) = \begin{cases} |\frac{x_i - y_i}{\max_i - \min_i}| & \text{if numeric, else} \\ 0 & \text{if } x_i = y_i \\ 1 & \text{if } x_i \neq y_i \end{cases}$$

- More sophisticated distance metrics use:
 - a weighting scheme for feature relevance
 - graded similarity measures

- More sophisticated distance metrics use:
 - a weighting scheme for feature relevance
 - graded similarity measures

- Similarity metrics weighted for feature relevance are based on the idea that some features may be better predictors of class membership than others
- All features are equal, but some features are more equal than others:

$$\Delta(X, Y) = \sum_{i=1}^{n} w_i \,\,\delta(x_i, y_i)$$

- Establish the relevance of features by looking at which features are good predictors
- Examples:
 - Information Gain
 - Gain Ratio

- Information Gain (IG): feature weighting based on information theory
- Compute the difference in uncertainty (i.e.; entropy) between the situations without and with knowledge of the value of that feature:

$$w_i = H(C) - \sum_{v \in V_i} P(v) imes H(C|v)$$

where *C* is the set of class labels, H(C) is the entropy of the class labels and V_i is the set of values for feature *i*

• *P*(*v*) estimated from the relative frequencies of the feature values in the training data

- The more relevant a feature, the greater the information gain
- Problem: IG overestimates the relevance of features with large numbers of values
- Gain Ratio alleviates this problem through division by the entropy of the feature values:

$$w_i = \frac{H(C) - \sum_{v \in V_i} P(v) \times H(C|v)}{-\sum_{v \in V_i} P(v) \log_2 P(v)}$$

- More sophisticated distance metrics use:
 - a weighting scheme for feature relevance
 - graded similarity measures

- Overlap metric treats all feature values as equally dissimilar
- For the Dutch diminutive classification task we would like to use the information that "b" and "p" are phonetically more similar than "b" and "a"
- Graded similarity metrics measure the similarity of feature values based on the co-occurence of feature values with outcome classes
- Example: modified value difference metric (MVDM)

MVDM describes the similarity of two feature values v₁ and v₂ as:

$$\delta(\mathbf{v}_1, \mathbf{v}_2) = \sum_{i=1}^n |P(C_i | \mathbf{v}_1) - P(C_i | \mathbf{v}_2)|$$

where $C_{i...n}$ are the outcome classes

• Warning: MVDM may lead to suboptimal results when the data are sparse

- 1) Define classification task
- 2) Learning phase
- 3) Performance phase:
 - a) Choose distance metric
 - b) Set *k* (number of nearest distances)
 - c) Choose how to extrapolate from nearest neighbors
 - d) Run classifier

- Choosing *k* wisely allows for optimal performance
- Setting *k* too low will result in potentially informative exemplars not being taken into account
- Setting *k* too high will lead to uninformative exemplars being taken into account
- Choosing an appropriate value of *k* is an empirical issue

- Default setting of *k* in TiMBL is 1
- Given that TiMBL uses the *k* nearest distances this is often the optimal setting when using overlap distance metrics in classification tasks with a small number of features
- When using graded similarity measures k = 1 tends to restrict the set of nearest neighbors to a single exemplar
- When using MVDM it is therefore useful to experiment with higher values of *k*

- 1) Define classification task
- 2) Learning phase
- 3) Performance phase:
 - a) Choose distance metric
 - b) Set *k* (number of nearest distances)
 - c) Choose how to extrapolate from nearest neighbors
 - d) Run classifier

- Exemplars in set of nearest neighbors vote for the class of a new item
- Most straightforward voting scheme: majority voting
- Vote of each neighbor receives equal weight
- Class with the highest number of votes is chosen

- Alternative voting schemes use distance-weighted voting
- Votes are weighted for the distance between each neighbor and the test item: votes from nearby neighbors are deemed more important than votes from faraway friends
- Distance-weighted voting often outperforms majority voting
- Examples:
 - Inverse Linear distance-weighting
 - Exponential Decay distance-weighting

 Inverse Linear distance-weighting assigns a weight w_j to each neighbor that linearly decreases as the distance between the neighbor and the test item increases:

$$w_j = \left\{ egin{array}{cc} rac{d_k-d_j}{d_k-d_1} & ext{if } d_k
eq d_1 \ 1 & ext{if } d_k = d_1 \end{array}
ight.$$

where d_j is the distance of the *j*-th neighbor to the test item, d_1 the distance of the closest neighbor and d_k the distance of the furthest neighbor

- Shephard (1987): the relevance of a previous stimulus for the generalization to a new stimulus is an exponentially decreasing function of the distance between the new stimulus and the previous stimulus in a psychological space
- Exponential decay weighting function:

$$w_{j}=oldsymbol{e}^{-lpha oldsymbol{d}_{j}^{eta}}$$

where α and β are constants determining the slope and the power of the exponential decay function

- What if the voting results in a tie?
- TiMBL procedure for breaking ties:
 - 1) increase k to k + 1
 - 2) assign class that is most frequent in the training data
 - 3) randomly assign a class

- 1) Define classification task
- 2) Learning phase
- 3) Performance phase:
 - a) Choose distance metric
 - b) Set *k* (number of nearest distances)
 - c) Choose how to extrapolate from nearest neighbors
 - d) Run classifier

Reminder:

noun	english	form	suffix	class
huis	house	huisje	-je	J
man	man	mannetje	-etje	E
raam	window	raampje	-pje	Ρ
woning	house	woninkje	-kje	K
baan	job	baantje	-tje	Т

Classification task: predict allomorph on the basis of stress and phonological onset, nucleus and coda of the base noun

44 | Memory based learning

- Provide test data in same format as training data
- Run TiMBL

Input format test data:

```
# =,=,=,=,=,=,=,+,p,e,=,T
# =,=,=,=,+,k,u,=,-,bl,u,m,E
\# +, m, I, =, -, d, A, G, -, d, }, t, J
# -,t,@,=,-,1,|,=,-,G,@,n,T
# -,=,I,n,-,str,y,=,+,m,E,nt,J
# =,=,=,=,=,=,=,+,br,L,t,J
# =,=,=,=,+,zw,A,=,-,m,@,r,T
# =,=,=,=,=,=,=,+,1,e,w,T
\# = = = = = = = +, tr, K, N, -, k, a, rt, J
# ...
# 950 lines
```


Run TiMBL:

```
# Timbl -f dimin.train -t dimin.test
#
# This uses the default parameter settings:
# IB1 (standard k-NN) algorithm (-a0)
# overlap similarity (-m0)
# Gain Ratio feature weighting (-dZ)
# k = 1 (-k1)
# no distance-weighting (-dZ)
#
# ....
# overall acccuracy: 0.968421 (920/950)
```


- Default parameter settings usually give decent performance
- For Dutch diminutives: 96.84% of test items classified correctly
- Can parameter optimization further improve performance?

Run TiMBL with MVDM, k = 5 and no feature weighting:

Timbl -a0 -mM -w0 -k5 -dZ -f dimin.train -t dimin.test # ...

overall acccuracy: 0.977895 (929/950)

Run TiMBL with MVDM, k = 5 and no feature weighting:

```
# Timbl -a0 -mM -w0 -k5 -dZ -f dimin.train -t dimin.test
# ...
# overall acccuracy: 0.977895 (929/950)
```

Might seem like a small improvement, but 26.67% less errors!

- Other useful diagnostics in the output:
 - Feature relevance (default)
 - Voting distributions (+v db)
 - Confusion matrix (+v cm)
 - Class statistics (+v cs)
 - Advanced statistics (+v as)

Feature relevance:

#	Feats	Vals	InfoGain	GainRatio
#	1	3	0.030971064	0.024891536
#	2	50	0.060860038	0.027552191
#	3	19	0.039562857	0.018676787
#	4	37	0.052541227	0.052620750
#	5	3	0.074523225	0.047699231
#	6	61	0.106044330	0.024471911
#	7	20	0.123486680	0.034953203
#	8	69	0.097198760	0.043983864
#	9	2	0.045752381	0.046816705
#	10	64	0.213887590	0.042844587
#	11	18	0.669704580	0.185070180
#	12	43	1.278076200	0.325371810

51 | Memory based learning

Run TiMBL with most relevant features only:

Timbl -m0:I1-10 -f dimin.train -t dimin.test
...
overall acccuracy: 0.973684 (925/950)

Run TiMBL with most relevant features only:

```
# Timbl -m0:I1-10 -f dimin.train -t dimin.test
# ...
# overall acccuracy: 0.973684 (925/950)
```

Removing less relevant features improved the classification performance of the model!

Voting distributions:

```
# =,=,=,=,=,=,=,+,pr,0,p,J,J { E 3.00000, J 12.0000 }
# =,=,=,=,=,=,=,=,+,w,e,t,J,J { J 2.00000 }
# =,=,=,=,=,=,=,+,t,L,n,T,T { J 1.00000 }
# =,=,=,=,=,=,=,=,+,t,L,n,T,T { T 1.00000 }
# =,=,=,=,=,=,=,=,+,z,o,m,P,P { P 3.00000 }
# +,d,a,=,-,m,0,s,-,kr,A,ns,J,J { J 1.00000 }
# =,=,=,=,+,=,a,rd,-,m,A,n,E,E { E 2.00000 }
```


Confusion matrix:

#		Т	E	J	Р	Κ
#		 				
#	Т	453	0	2	0	0
#	E	0	87	4	1	8
#	J	1	4	347	0	0
#	Ρ	0	3	0	24	0
#	Κ	0	7	0	0	9

Class statistics:

#	# Scores per Value Class:										
#	class		TP	FP	TN	FN	prec.	recall	• • •	F-score	
#	Т		453	1	494	2	0.99780	0.99560	• • •	0.99670	• • •
#	E		87	14	836	13	0.86139	0.87000	• • •	0.86567	
#	J		347	6	592	5	0.98300	0.98580	• • •	0.98440	• • •
#	Р		24	1	922	3	0.96000	0.88889	• • •	0.92308	• • •
#	K		9	8	926	7	0.52941	0.56250		0.54545	

• Precision: how many of instances labeled as class *C* were indeed class *C*?

$$\textit{precision} = \frac{\textit{TP}}{\textit{TP} + \textit{FP}}$$

• Recall: how many of instances that were class *C* were indeed labeled as class *C*?

$$recall = rac{TP}{TP + FN}$$

- F-score metric to summarize precision and recall in one measure
- Harmonic mean of precision and recall:

$$\mathsf{F}\text{-}\mathsf{score} = \frac{2 \times \textit{precision} \times \textit{recall}}{\textit{precision} + \textit{recall}}$$

• Penalizes large differences between precision and recall

Class statistics:

#	# Scores per Value Class:										
#	class		TP	FP	TN	FN	prec.	recall	• • •	F-score	
#	Т		453	1	494	2	0.99780	0.99560	• • •	0.99670	• • •
#	E		87	14	836	13	0.86139	0.87000	• • •	0.86567	• • •
#	J		347	6	592	5	0.98300	0.98580	• • •	0.98440	• • •
#	Р		24	1	922	3	0.96000	0.88889	• • •	0.92308	• • •
#	Κ		9	8	926	7	0.52941	0.56250		0.54545	

- Class statistics provide F-scores per class
- Advanced statistics provide F-scores for the full test set
- Two types of averaging:
 - micro-averaging: the F-score for each class is weighted proportionally to the frequency of the class in the test set
 - macro-averaging: all the F-scores are added and the sum is divided by the number of classes

Advanced statistics:

```
# Scores per Value Class:
             FP TN FN
# class
         ΤP
                        prec. recall ... F-score ...
# T
        453
               1 494
                    2 0.99780 0.99560 ... 0.99670 ...
# E
        87
              14 836 13 0.86139 0.87000 ... 0.86567
              6 592 5 0.98300 0.98580 ... 0.98440 ...
# .J
        | 347
# P
        | 24
               1 922 3 0.96000 0.88889 ... 0.92308 ...
        9
              8 926 7 0.52941 0.56250 ... 0.54545 ...
# K
#
 . . .
# F-Score beta=1, microav: 0.968123
# F-Score beta=1, macroav: 0.863060
#
 . . .
# overall acccuracy: 0.968421 (920/950)
```


- TiMBL has been applied to a wide range of Natural Language Processing and machine-learning tasks
- Krott, Baayen & Schreuder (2001) is an example of an application in psycholinguistic research

- Topic: linking morphemes in Dutch compounds
- Dutch has three linking morphemes:
 - -en (e.g; "boekenplank" (bookshelf))
 - -s (e.g.; "plaatjesboek" (pictureboek))
 - no linking element (e.g.; "theeØpot" (teapot))

- Traditional approach: capture distribution of linking morphemes through phonological, morphological and semantic rules
- Example: "no linking morpheme if the first constituent ends with a vowel"
 - "theeØpot" (teapot)
 - "knieØschijf" (knee cap)
 - but: "pygmee-en-volk" (pygmy people)

- Can memory-based learning capture the distribution of linking morphemes in Dutch compounds?
- Two test-cases:
 - Train TiMBL on existing Dutch compounds
 - Predict the choice of linking morphemes in neologisms

- Two test-cases:
 - Predict the linking morpheme in existing Dutch compounds
 - Predict the linking morpheme in neologisms

- Train TiMBL on 22,994 existing Dutch compounds
- Classes: linking morphemes -en, -s and ∅
- Features:
 - left constituent and right constituent
 - plural suffix left constituent
 - animacy left and right constituent
 - abstractness left and right constituent
 - morphological complexity left constituent

- Training data are test data
- 10-fold cross validation:
 - divide data into 10 random held-out subsets
 - for each held-out subset, predict linking morphemes based on training set of other 90%
 - model performance is the average percentage of correct classification for all 10 subsets

- TiMBL settings:
 - standard *k*-*NN* algorithm
 - overlap similarity
 - Information Gain (IG) feature weighting
 - *k* = 1
 - no distance-weighting

Feature relevance:

#	feature	IG
#		
#	left constituent	1.11
#	right constituent	0.41
#	plural suffix left constituent	0.10
#	abstractness left constituent	0.07
#	animacy left constituent	0.04
#	abstractness right constituent	0.02
#	animacy right constituent	0.00
#	stress final syllable left const.	0.07
#	morphological complexity left const.	0.11

- Classification performance: 93.2%
- Using only the first constituent as a feature: 92.5%

- Two test-cases:
 - Predict the linking morpheme in existing Dutch compounds
 - Predict the linking morpheme in neologisms

- Does the model predict the right linking morpheme for new compounds?
- Two steps:

1) Collect human classification behavior for neologisms

2) Compare model predictions against human classifications

- Present participants with non-existing compounds
- Leave a blank between the two constituents
- Ask participants to fill out the most appropriate linking morpheme (if any) at the blank

mier_val

bedrijf__bos

zand__bord

© 2013 Universität Tübingen

- Systematically vary the bias of the left and right constituent towards -en and -s
- Experimental results confirm data for existing compounds:
 - strong effect of left constituent bias
 - weaker effect of right constituent bias

- Can TiMBL capture these experimental findings?
- Train TiMBL on existing Dutch compounds and classify the experimental items in the test set
- Compare TiMBL classification to the majority choice of the participants in the experiments

- Classification performance abstract rules: 53.94%
- TiMBL classification performance: 87.35%
- Relevant features:
 - left constituent
 - abstractness of right constituent (abstract right: fewer -en, more -s)
 - animacy of left constituent (animate left: more -en)

- Conclusions:
 - The choice for a linking morpheme in Dutch compounds is primarily guided by the identity of the first constituent
 - Memory Based Learning accurately captures the distribution of linking morphemes in both existing and new Dutch compounds

Memory Based Learning: conclusions

- Memory-based learning often offers excellent classification
 performance
- Memory-based learning is applicable to a wide range of Natural Language Processing and machine-learning tasks

Memory Based Learning: conclusions

- Downsides:
 - storage requirements and computational costs are proportional to the size of the training data
 - decision tree optimizations alleviate these concerns, but are conceptually similar to a set of rules
 - neuro-biologically implausible

Thank you!

