

Philosophische Fakultät Seminar für Sprachwissenschaft

Machine learning in linguistics

Peter Hendrix

Machine learning

"Machine learning explores the study and construction of algorithms that can learn from and make predictions on data"

http://en.wikipedia.org/wiki/Machine_learning

- Kaggle: "What's cooking?"
- Text classification
- Predict cuisine based on ingredients


```
# Load data
load("data/cooking.rda")
nrow(data)
[1] 39774
#
# List classes
sort(unique(data$cuisine))
 [1] "brazilian"
                     "british"
                                     "cajun_creole"
 [4] "chinese"
                     "filipino"
                                     "french"
 [7] "greek"
                                     "irish"
                     "indian"
                     "jamaican"
[10] "italian"
                                     "japanese"
                     "mexican"
[13] "korean"
                                     "moroccan"
                                   "spanish"
[16] "russian"
                     "southern_us"
[19] "thai"
                     "vietnamese"
```

4 | Machine learning


```
# Look at first recipe
data$ingredients[[1]]
[1] "romaine lettuce"
                            "black olives"
[3] "grape tomatoes"
                            "garlic"
[5] "pepper"
                            "purple onion"
[7] "seasoning"
                            "garbanzo beans"
[9] "feta cheese crumbles"
#
# Which cuisine?
data$cuisine[1]
[1] "greek"
```



```
# Look at another recipe
data$ingredients[[9]]
 [1] "olive oil"
                               "purple onion"
 [3] "fresh pineapple"
                               "pork"
 [5] "poblano peppers"
                               "corn tortillas"
 [7] "cheddar cheese"
                               "ground black pepper"
                               "iceberg lettuce"
 [9] "salt"
                               "jalapeno chilies"
[11] "lime"
[13] "chopped cilantro fresh"
#
# Which cuisine?
```

7 | Machine learning


```
# Look at another recipe
data$ingredients[[9]]
 [1] "olive oil"
                               "purple onion"
 [3] "fresh pineapple"
                               "pork"
 [5] "poblano peppers"
                               "corn tortillas"
 [7] "cheddar cheese"
                               "ground black pepper"
                               "iceberg lettuce"
 [9] "salt"
                               "jalapeno chilies"
[11] "lime"
[13] "chopped cilantro fresh"
#
# Which cuisine?
data$cuisine[9]
[1] "mexican"
```


- Basic preprocessing:
 - stemming
 - bag of words
 - remove sparse terms (n < 10)

- Training:
 - stratified sampling from labeled data
 - training set (n = 29,774)
 - validation set (n = 10,000)
 - tune model parameters using validation set performance
- Fit different classification algorithms

algorithm	performance	time
gradient boosting (xgboost)	80.5%	<10 mins
deep learning (h2o)	80.4%	18 hours
neural net (h2o)	79.7%	1.5 hours
multinomial regression (glmnet)	77.7%	3.5 hours
support vector machine (e1071)	77.6%	1.5 hours
<pre>random forest (randomForest)</pre>	75.6%	20 mins
discrimination learning (ndl)	75.1%	<10 mins
<pre>partial least squares (caret:pls)</pre>	74.8%	1 hour
discriminant analysis (MASS)	74.6%	<10 mins
rule-based (C50)	71.5%	45 mins
decision tree (C50)	69.5%	30 mins
k nearest neigbhors (class)	65.9%	13 hours
naive Bayes (klaR)	62.5%	20 mins

- Improve performance:
 - additional preprocessing
 - proper cross-validation
 - ensembling and/or stacking

Machine learning

"All models are wrong, but some are useful"

George Box

Machine learning

- Which models are useful?
- Statisticians favourite answer: "it depends"
- General criteria:
 - performance
 - computational efficiency
 - interpretability
 - plausibility