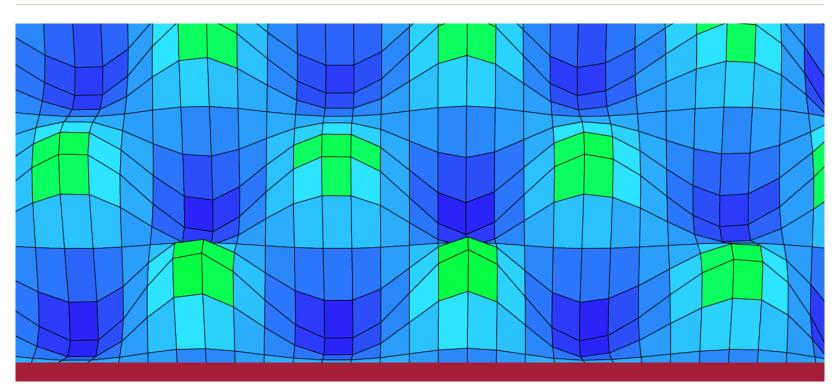


Philosophische Fakultät Seminar für Sprachwissenschaft



Cognitive models of language processing: vector semantics

Peter Hendrix

Credits

Speech and Language Processing: An Introduction to Natural Language Processing

Jurafsky & Martin (2009)

Definition of meaning

What is meaning?

Dictionary definitions

- man: "an adult human male"
- woman: "an adult human female"
- boy: "a male child or youth"
- girl: "a female child or youth"

Semantic features

- man: [+HUMAN], [+MALE], [+ADULT]
- woman: [+HUMAN], [-MALE], [+ADULT]
- boy: [+HUMAN], [+MALE], [-ADULT]
- girl: [+HUMAN], [-MALE], [-ADULT]

Semantic features

- Problems:
 - features are discrete:
 - hot: [+WARM]
 - cold: [-WARM]
 - lukewarm: [?WARM]
 - human: [?WARM]
 - potentially infinite set of features
 - selection of features is subjective and labour-intensive

Distributional semantics

"You shall know a word by the company it keeps"

John Rupert Firth

© 2013 Universität Tübingen

Distributional semantics

- What does lamap mean?
 - Where did you buy this lamap?
 - Sit on the lamap and make yourself comfortable.
 - After we moved the lamap, there was a round faded area on the floor.

Nomenclature

distributional semantics

=

vector semantics

vector-space semantics

=

© 2013 Universität Tübingen

Why "vector semantics"?

- Word meanings are represented as a vector of numbers
- The numbers are based on co-occurrence frequencies

Vector semantics: steps

- Steps:
 - 1) Calculate co-occurrence matrix
 - 2) Apply weighting scheme
 - 3) Reduce dimensionality
 - 4) Calculate similarity between semantic vectors

Vector semantics: steps

- Steps:
 - 1) Calculate co-occurrence matrix
 - 2) Apply weighting scheme
 - 3) Reduce dimensionality
 - 4) Calculate similarity between semantic vectors

Co-occurrence matrix

- Define co-occurrence of words with contexts
- Contexts can be:
 - documents \rightarrow term-document matrix
 - ...
 - words \rightarrow term-term matrix
- Retrieve co-occurrence frequency for all word-context pairs

Types of co-occurrence matrices

- Term-document matrix:
 - topic retrieval
 - search results optimization
- Term-term matrix:
 - semantic similarities between words
 - semantic categorization
 - sentiment analysis

• . . .

Term-document matrix

	text1	text2	text3	text4	text5	
table	0	3	1	3	3	
house	0	5	1	4	1	
cat	0	0	7	2	0	
banana	5	0	0	1	2	
apple	4	1	1	4	2	
		• • •				

- Define a window size *n* (e.g.; 5)
- Context words are all words within *n* words of the target word
- Calculate a co-occurrence matrix

"... the room there was a table, nicely dressed with a new ... "

. . .

- "... he quickly had breakfast: a banana, a glass of juice and ... "
 - "... she spotted the dog, the cat ran into the room and"

. . .

	room	breakfast	school	painting	party	
table	1	1	2	5	4	
house	3	0	1	2	2	
cat	1	0	0	0	1	
banana	0	4	0	2	1	
apple	0	3	1	4	0	
			•••	•••	• • •	

- The window size *n* is a free parameter
- Window size determines the type of relations captured:
 - smaller window: more syntactic
 - larger window: more semantic
- Optimal window size depends on the application

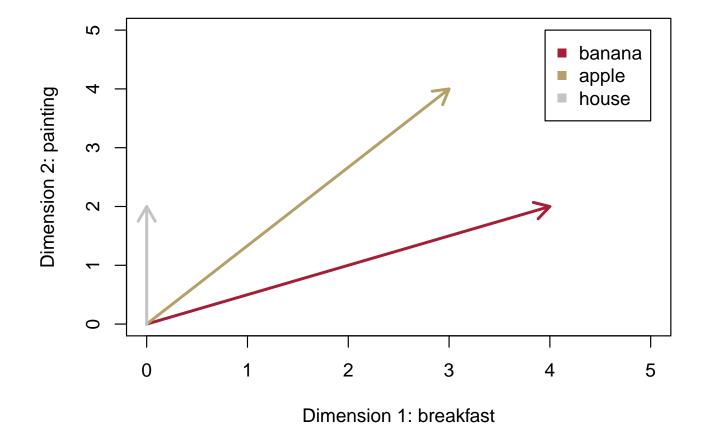
Semantic vectors

	room	breakfast	school	painting	party	
table	1	1	2	5	4	
house	3	0	1	2	2	
cat	1	0	0	0	1	
banana	0	4	0	2	1	
apple	0	3	1	4	0	

Semantic vectors: geometry

	room	breakfast	school	painting	party	
table	1	1	2	5	4	
house	3	0	1	2	2	
cat	1	0	0	0	1	
banana	0	4	0	2	1	
apple	0	3	1	4	0	

Semantic vectors: geometry



Vector semantics: steps

- Steps:
 - 1) Calculate co-occurrence matrix
 - 2) Apply weighting scheme
 - 3) Reduce dimensionality
 - 4) Calculate similarity between semantic vectors

Weighting

- Raw co-occurrence counts are suboptimal
- Adjust counts for frequency of terms in isolation
- Most common weighting scheme: point-wise mutual information (PMI)

PMI

• Compare observed frequency with expected frequency:

$$\mathsf{PMI} = \mathsf{log}_2 \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

- Positive value: co-occurrence frequency higher than expected by chance
- Negative value: co-occurrence frequency lower than expected by chance

- Negative values of PMI can only be established reliably with massive corpora
- Solution: set negative values to zero
- Positive point-wise mutual information:

$$\mathsf{PPMI} = \max\left(0, \mathsf{log}_2 \frac{P(w_1, w_2)}{P(w_1)P(w_2)}\right)$$

	room	breakfast	school	painting	party	\sum
table	1	1	2	5	4	13
house	3	0	1	2	2	8
cat	1	0	0	0	1	2
banana	0	4	0	2	1	7
apple	0	3	1	4	0	8
\sum	5	8	4	13	8	38

$$\mathsf{PPMI}_{\textit{banana,breakfast}} = \max\left(0, \log_2 \frac{\frac{4}{38}}{\frac{7}{38} * \frac{8}{38}}\right) = 1.44$$

	room	breakfast	school	painting	party
table	0	0	0.55	0.17	0.55
house	1.51	0	0.25	0	0.25
cat	1.92	0	0	0	1.25
banana	0	1.44	0	0	0
apple	0	0.83	0.25	0.55	0

	room	breakfast	school	painting	party
table	0	0	0.55	0.17	0.55
house	1.51	0	0.25	0	0.25
cat	1.92	0	0	0	1.25
banana	0	1.44	0	0	0
apple	0	0.83	0.25	0.55	0

- PPMI is biased towards low frequency words
- Low frequency words tend to have higher PPMI values
- Solution: Laplace smoothing
- Add a low number to all frequency counts

Laplace smoothing

	room	breakfast	school	painting	party
table	1	1	2	5	4
house	3	0	1	2	2
cat	1	0	0	0	1
banana	0	4	0	2	1
apple	0	3	1	4	0

Laplace smoothing

	room	breakfast	school	painting	party
table	2	2	3	6	5
house	4	1	2	3	3
cat	2	1	1	1	2
banana	1	5	1	3	2
apple	1	4	2	5	1

PPMI (Laplace smoothing)

	room	breakfast	school	painting	party
table	0	0	0.22	0.22	0.43
house	0.95	0	0.11	0	0.16
cat	0.85	0	0	0	0.47
banana	0	1.01	0	0	0
apple	0	0.58	0.11	0.43	0

Weighting schemes

- PPMI is the most popular weighting schemes for term-term matrices
- Alternative:

t-score_{*w*₁*w*₂} =
$$\frac{P(w_1, w_2) - P(w_1)P(w_2)}{\sqrt{P(w_1)P(w_2)}}$$

• For term-document matrices:

$$\mathsf{tf}\mathsf{-}\mathsf{idf}_{w_1w_2} = \mathsf{tf}_{w_1w_2} * \mathsf{log}\left(\frac{\mathsf{N}}{\mathsf{d}_{w_1}}\right)$$

where N is the total number of documents

Vector semantics: steps

- Steps:
 - 1) Calculate co-occurrence matrix
 - 2) Apply weighting scheme
 - 3) Reduce dimensionality
 - 4) Calculate similarity between semantic vectors

Dimension reduction

- Semantic vectors from co-occurrence matrices are:
 - long
 - sparse
- Use dimension reduction techniques to reduce the length of semantic vectors
- Advantages:
 - computationally efficient
 - less overfitting
 - capture latent semantic structure

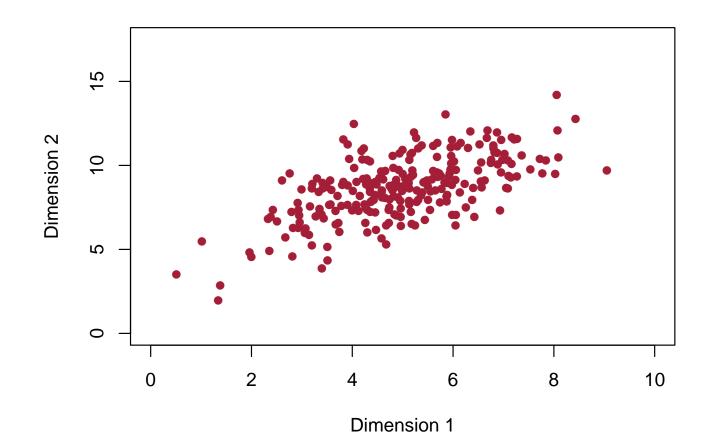
Latent semantic structure

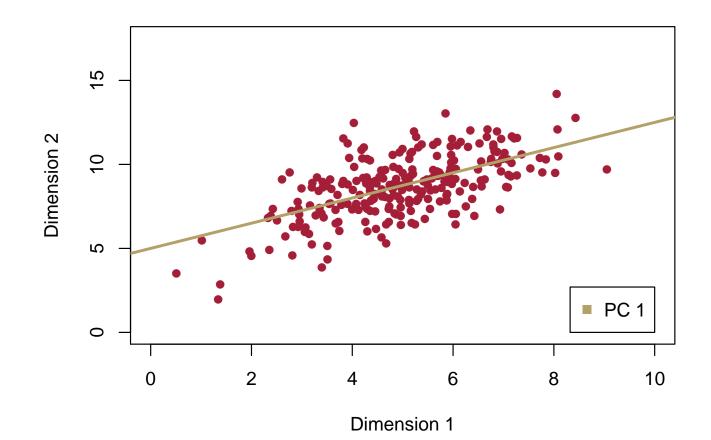
- Higher order co-occurrences
- Example:
 - Dolphins are intelligent.
 - Whales are smart animals.
- The columns for intelligent and smart are correlated

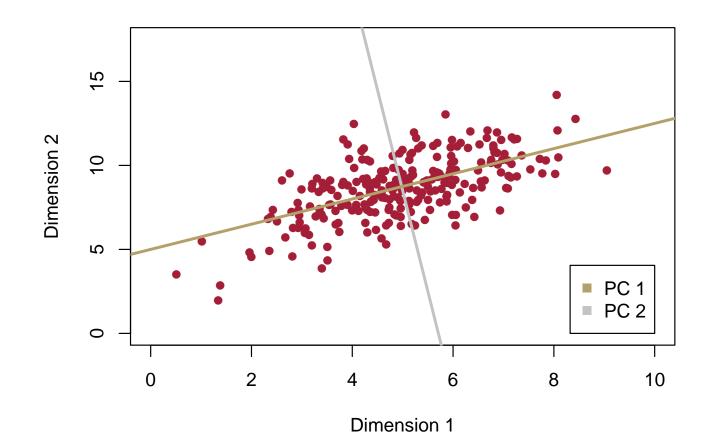
Latent semantic structure

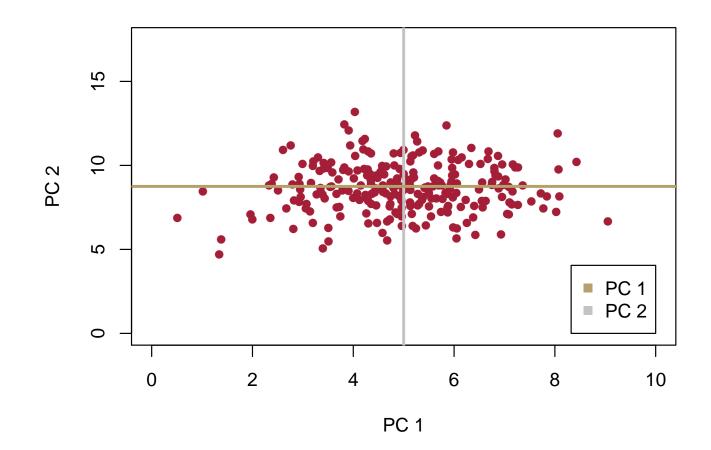
- Can we re-organize the data such that:
 - 1) the information in the co-occurrence matrix is retained
 - 2) columns are no longer correlated
 - 3) the number of columns is reduced
- Use single value decomposition (SVD)
- Applicable to both term-document and term-term matrices

- Rotate the original n-dimensional data space:
 - sequentially find dimensions with the greatest variance in the original data
 - restriction: dimensions have to be orthogonal to all previous dimensions
- Dimensions in the rotated space are called principal components









- Later dimensions explain little variance in the data
- Reduce to the rotated semantic space to *n* dimensions
- Typical values for *n*: 100 to 5000

Vector semantics: steps

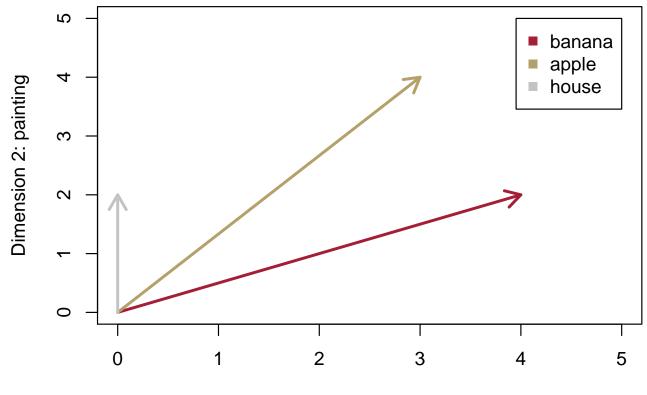
- Steps:
 - 1) Calculate co-occurrence matrix
 - 2) Apply weighting scheme
 - 3) Reduce dimensionality
 - 4) Calculate similarity between semantic vectors

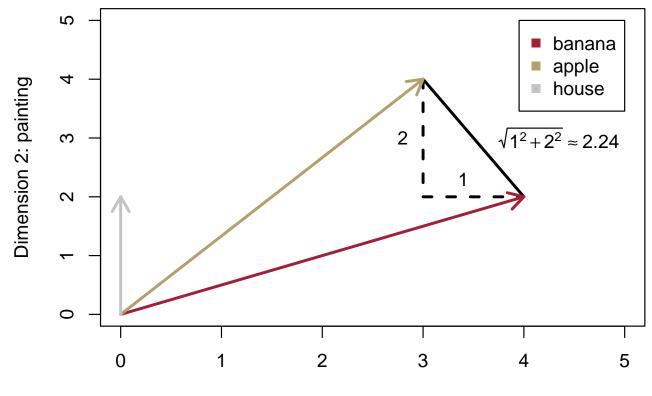
Similarity between semantic vectors

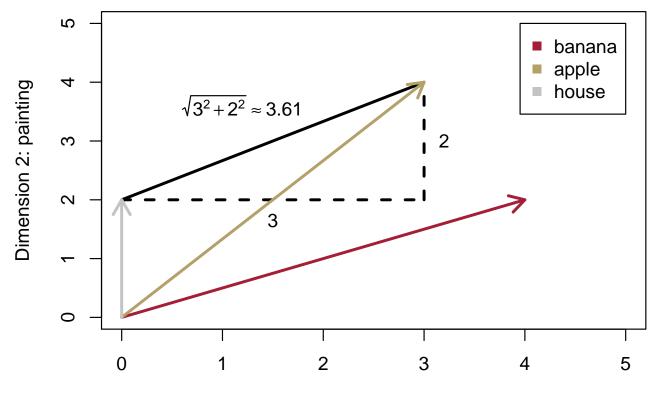
- Semantic vectors are:
 - rows in the (processed) co-occurrence matrix
 - representations of word meanings
 - meaningful only in the context of other semantic vectors from the same semantic space
- We need a measure of the similarity of semantic vectors

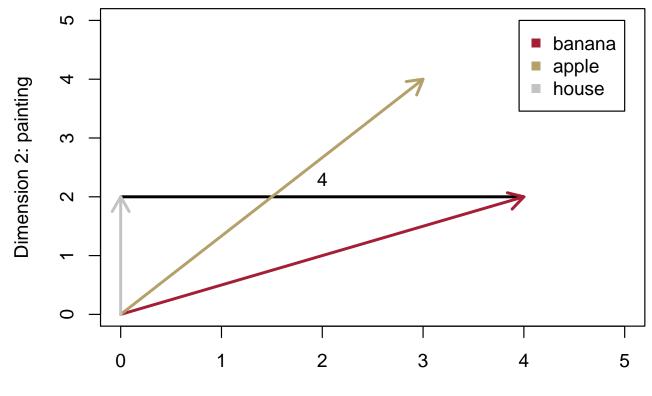
Semantic similarity metric

- Semantic similarity is inversely proportional to the distance between semantic vectors
- Distance metrics:
 - Euclidean distance
 - Cosine similarity

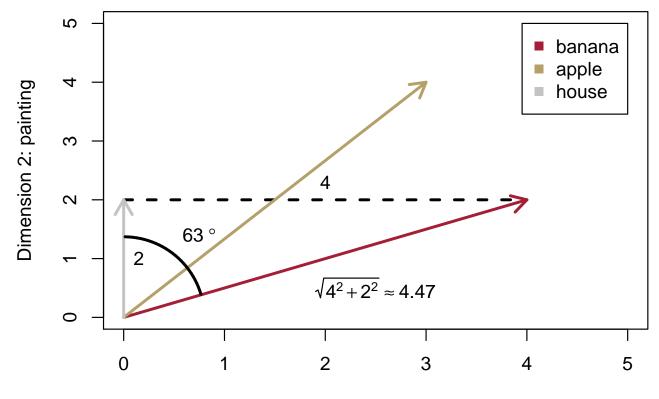


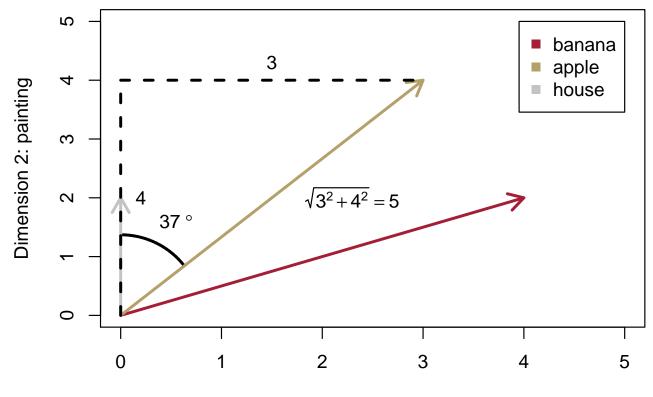




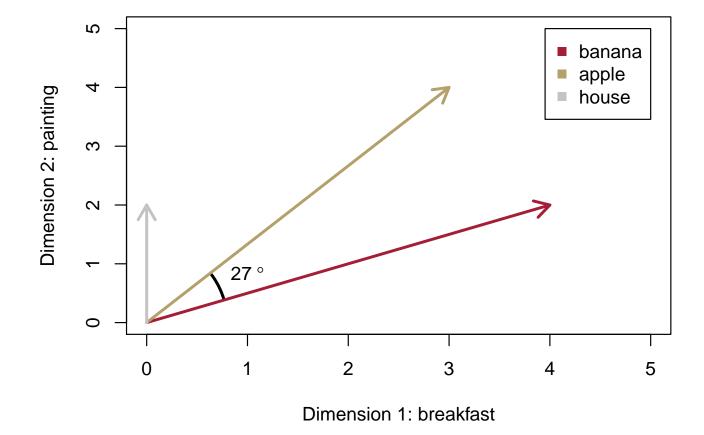


- Euclidean distance between semantic vectors:
 - banana apple ≈ 2.24
 - banana house ≈ 4.47
 - apple house ≈ 3.61
- Euclidean distance between semantic vectors is inversely proportional to semantic similarity
- Euclidean distance is sensitive to vector length





Semantic similarity: cosine distance



- Angles between semantic vectors:
 - banana apple \approx 26.56
 - banana house ≈ 63.43
 - apple house ≈ 36.87
- Angles between semantic vectors are inversely proportional to semantic similarity

- Cosine of the angles between semantic vectors:
 - banana apple = $\cos 26.56 \approx 0.89$
 - banana house = $\cos 63.43 \approx 0.45$
 - apple house = $\cos 36.87 \approx 0.80$
- Cosines of angles between semantic vectors are proportional to semantic similarity

• Efficient computation of cosine distance:

$$\operatorname{cosine}(\vec{w}_{1}, \vec{w}_{2}) = \frac{\vec{w}_{1}\vec{w}_{2}}{||\vec{w}_{1}|| ||\vec{w}_{2}||} = \frac{\sum_{i=n}^{N} w_{1_{i}}w_{2_{i}}}{\sqrt{\sum_{i=n}^{N} w_{1_{i}}^{2}} \sqrt{\sum_{i=n}^{N} w_{2_{i}}^{2}}}$$

• Example:

•
$$\vec{banana}: \langle 4, 2 \rangle, \vec{apple}: \langle 3, 4 \rangle$$

• $cosine(\vec{banana}, \vec{apple}) = \frac{\sum 4 * 3 + 2 * 4}{\sqrt{\sum 4^2 + 2^2}\sqrt{\sum 3^2 + 4^2}} \approx 0.89$

Reminder

	room	breakfast	school	painting	party
table	1	1	2	5	4
house	3	0	1	2	2
cat	1	0	0	0	1
banana	0	4	0	2	1
apple	0	3	1	4	0

Cosine similarity

	table	house	cat	banana	apple
table	1				
house	0.79	1			
cat	0.52	0.83	1		
banana	0.57	0.31	0.15	1	
apple	0.72	0.42	0	0.86	1

Cosine similarity: Laplace smoothing + PPMI

	table	house	cat	banana	apple
table	1				
house	0.18	1			
cat	0.39	0.94	1		
banana	0	0	0	1	
apple	0.31	0.02	0	0.79	1

Latent semantic analysis (LSA) (Landauer & Dumais, 1997)

- Co-occurrence matrix: term-document matrix
- Weighting scheme: division of local weight by global weight:
 - local weight: $\log(tf_{w_1w_2} + 1)$
 - global weight: $-\sum_{j=1}^{N} p(i, j) * \log p(i, j)$ where *N* is the number of documents
- Dimension reduction: SVD (300 dimensions)
- Distance metric: cosine distance

Hyperspace analogue to language (HAL) (Lund & Burgess, 1996)

- Co-occurrence matrix: term-term matrix (window size: 10)
- Weighting scheme: none
- Dimension reduction: none or entropy based selection of columns
- Distance metric: Euclidean distance

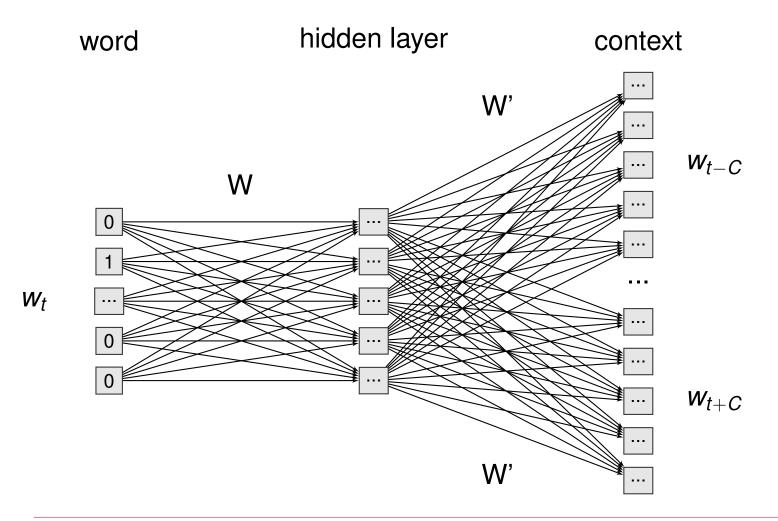
Predictive models

- Count-based models:
 - traditional type of model in vector semantics
 - semantic vectors derived from co-occurrence matrices
 - computationally expensive
- Predictive models:
 - current trend in vector semantics
 - semantic vectors based on predictions of target words or context words
 - computationally efficient

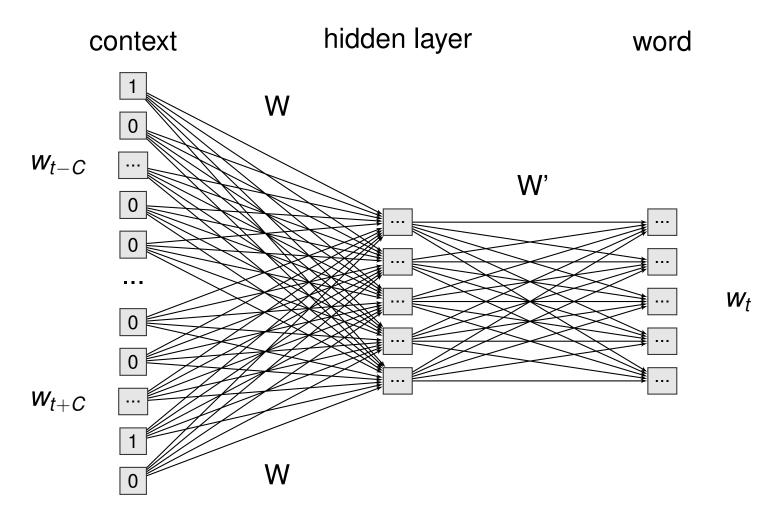
word2vec

- Predictive models: word2vec (Mikolov et al., 2013)
- Two types of models:
 - skip-gram (predict context words from target words)
 - CBOW (predict target words from context words)
- Both types of models are feed-forward neural networks

word2vec: skip-gram



word2vec: CBOW



Model objective

• Maximize the probabibility of the observed context words for all words in the corpus:

$$\underset{\theta}{\operatorname{argmax}} \prod_{w \in T} \left[\prod_{c \in C(w)} p(w_c | w_t; \theta) \right]$$

where T is the corpus text and θ is the set of parameters associated with the weight matrices W and W'

(Goldberg & Levy, 2014)

• How?

Algorithm

- For each word in the corpus:
 - 1) Present input (one-hot encoding)
 - 2) Calculate output activations given current W and W'
 - 3) Convert output activations to probabilities:

$$p(w_{c_i}|w_t) = \frac{\exp{(act_i)}}{\sum_{i=1}^{N} \exp{(act_i)}}$$

where N is the number of word types in the corpus

- 4) Compare output to actual output
- 5) Adjust W and W' through back-propagation

Output

- Output: matrix W
- Semantic vectors are rows in W

Optimization

- Computational tricks:
 - 1) sub-sampling of frequent words
 - 2) optimization of probability estimation
 - 3) negative sampling

How to use word2vec?

1) Get word2vec

```
svn checkout http://word2vec.googlecode.com/svn/trunk/
# Or:
git clone https://github.com/dav/word2vec
#
# 2) Install word2vec
make
# 3) Run word2vec:
word2vec -train corpus.txt -output vectors.txt -cbow 0 -size 200
# Some parameters:
# -cbow (1 = cbow, 0 = skip-gram)
# -window (window size; skip length between words)
# -size (number of dimensions in semantic space)
# -threads (number of threads to use)
# ...
```


Reading semantic vectors into R

```
# Read file created by word2vec
# Created with skip-gram, window size of 5, 200 dimensions
vectors = read.table("vectors.txt",quote="",comment.char="",fill=TRUE)
# Remove first line (general information)
vectors = vectors[-1,]
# Define words
words = vectors[,1]
# Remove first column (words)
vectors = vectors[,-1]
```


Reading semantic vectors into R

```
# Turn into matrix
vectors = as.matrix(vectors)
rownames(vectors) = words
colnames(vectors) = 1:ncol(vectors)
```

```
# Look at dimensions
dim(vectors)
# [1] 552403 200
```

```
# Save matrix
save(vectors,file="vectors.rda")
```


Cosine distance

```
# Load semantic vectors
load("data/vectors.rda")
# Define function to calculate cosine similarity
cos.dist <- function(word1,word2,matrix) {
   w1 = matrix[word1,]
   w2 = matrix[word2,]
   cos.dist = sum(w1*w2)/sqrt(sum(w1^2)*sum(w2^2))
   return(cos.dist)
}</pre>
```


Cosine distance

```
# Get semantic similarities
cos.dist(word1 = "apple",word2 = "banana", matrix = vectors)
# [1] 0.7725999
cos.dist(word1 = "apple",word2 = "house", matrix = vectors)
# [1] 0.04490028
cos.dist(word1 = "banana",word2 = "house", matrix = vectors)
# [1] 0.02936583
```



```
# Load library for parallel processing
library(parallel)
```

```
# Define function to get semantic neighbors
cos.dist.all <- function(word1,matrix,cores=4) {
  w1 = matrix[word1,]
  distances = unlist(mclapply(1:nrow(matrix),FUN = function(i) {
    w2 = matrix[i,]
    cos.dist = sum(w1*w2)/sqrt(sum(w1^2)*sum(w2^2))
    return(cos.dist)
  },mc.cores=cores))
  names(distances) = rownames(matrix)
  distances = rev(sort(distances))
  return(distances)
}
```

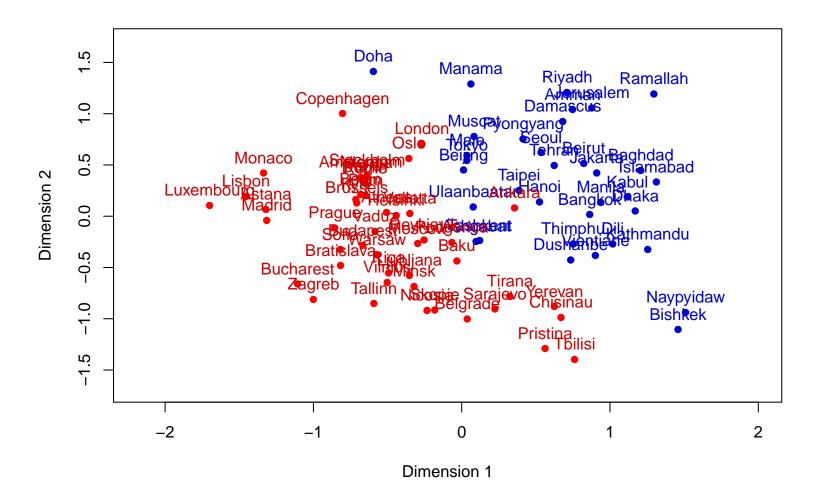

# Get semantic neighbors					
<pre>neighbors = cos.dist.all(word1 = "apple", matrix = vectors)</pre>					
neighbors[1:10]					
#	apple	almond	pumpkin	pineapple	pear
#	1.0000000	0.8486669	0.8482427	0.8440529	0.8420063
#	avocado	strawberry	blueberry	pecan	pomegranate
#	0.8414042	0.8395716	0.8369698	0.8331580	0.8308719

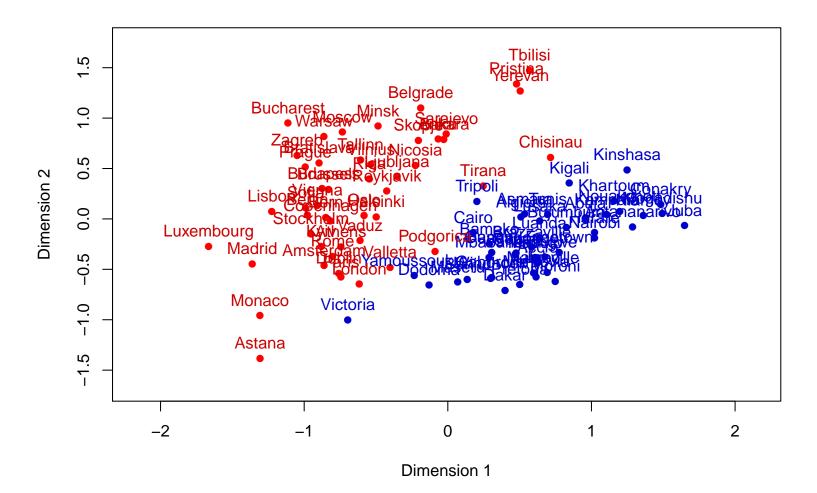
# Get semantic neighbors						
<pre>neighbors = cos.dist.all(word1 = "banana", matrix = vectors)</pre>						
neighbors[1:10]						
#	banana	almond	mango	pineapple	coconut	strawberry
#	1.0000000	0.7936759	0.7911360	0.7888999	0.7855046	0.7831195
#	avocado	pear	apple	melon		
#	0.7775446	0.7727675	0.7725999	0.7714198		

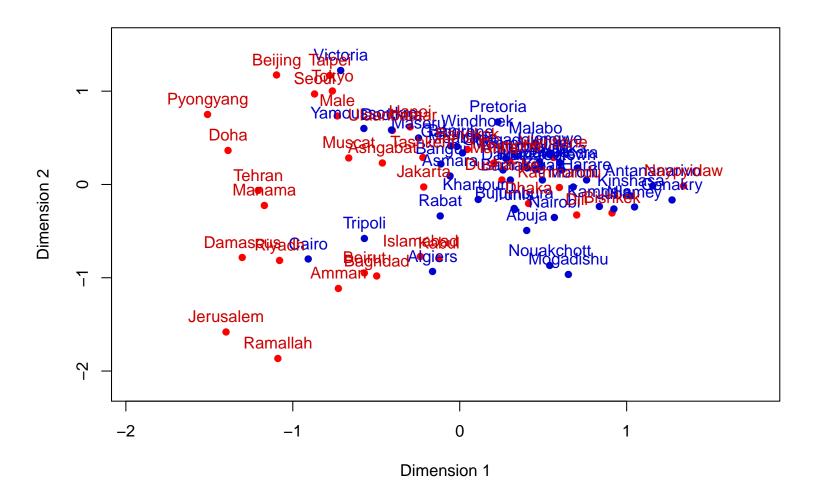
# Get semantic neighbors						
<pre>neighbors = cos.dist.all(word1 = "house", matrix = vectors)</pre>						
neighbors[1:10]						
#	house	bungalow	five-bedroomed	townhouse		
#	1.000000	0.7794419	0.7021261	0.7019160		
#	apartment	semi-detached	four-bedroom	mid-terrace		
#	0.6956096	0.6914265	0.6902554	0.6888919		
#	five-bedroom	three-bedroom				
#	0.6817849	0.6805665				

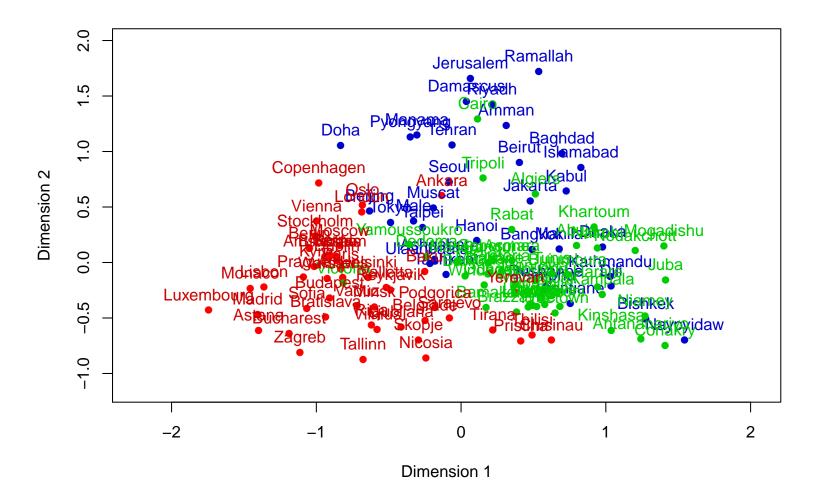
- Automatically learn semantic categorization:
 - 1) extract relevant semantic vectors
 - 2) apply clustering technique

- Example:
 - 1) capitals of continents Europe, Asia and Africa
 - 2) multidimensional scaling:
 - calculate Euclidean distance between all points
 - represent distance information in k dimensions (here: k = 2)









Evaluation

- Evaluation of semantic space models
 - correlation with human ratings
 - semantic similarity tasks (e.g.; synonym detection)
 - analogy test

Analogy test

- Semantic and syntactic analogies
 - Semantic: Greece : Athens :: China : ...?
 - Syntactic: good : better :: hard : ...?
- Model answer:
 - 1) calculate $\vec{v} = At\vec{hens} Greece + China$
 - 2) return closest semantic neighbor of \vec{v}

Analogies: function

```
# Define function to get semantic neighbors
cos.dist.analogy <- function(words,matrix,cores=4,nrows=30000) {</pre>
  w1 = matrix[words[2],] - matrix[words[1],] + matrix[words[3],]
  matrix = matrix[1:nrows,]
  distances = unlist(mclapply(1:nrow(matrix),FUN = function(i) {
    w^2 = matrix[i,]
    \cos.dist = sum(w1*w2)/sqrt(sum(w1^2)*sum(w2^2))
    return(cos.dist)
  },mc.cores=cores))
  names(distances) = rownames(matrix)
  distances = rev(sort(distances))
  distances = distances[which(!(names(distances)%in%words))]
  return(distances)
}
```


Analogies: semantic

0.774342

Analogies: semantic

Analogies: syntactic

0.6109970 0.5557460 0.5388236

Types of analogies

category	example
capital	Accra : Ghana :: Antananarivo :
state	Chicago : Illinois :: Houston :
adverb	amazing : amazingly :: quick :
opposite	certain : uncertain :: rational :
comparative	good : better :: hard :
superlative	big : biggest :: good :
participle	dance : dancing :: go :
country adjective	England : English :: Korea :
past tense	looking : looked :: seeing :
plural	hand : hands :: child :
3 rd person singular	predict : predicts :: see :

Performance

 Compare performance of semantic vector models when trained on a 6 billion word corpus: (Pennington, Socher & Manning, 2014)

model	performance
SVD, no weighting	7.3%
SVD, $log(1 + f_{ij})$ weighting	60.1%
word2vec: CBOW	65.7%
word2vec: skip-gram	69.1%

Performance

- Are predictive models better than count-based models?
- Not necessarily:
 - strong mathematical relationship between word2vec and PPMI weighting
 - implementation and hyperparameters may play a large role

Global vectors (GloVe) (Pennington, Socher & Manning, 2014)

- New count-based model
- Idea: the ratio of co-occurrence probabilities provides semantic information

probability	solid	gas	water	fashion
P(k ice)	large	small	large	small
P(k steam)	small	large	large	small
P(k ice)/P(k steam)	>1	<1	\sim 1	\sim 1

- Frequency weighting: $\log(f_{w_1w_2} + 1)$
- Adapt loss function to calculate semantic vectors that satisfy ratios of co-occurrence probabilities

Performance GloVe

 Compare performance of semantic vector models when trained on a 6 billion word corpus: (Pennington, Socher & Manning, 2014)

model	performance
SVD, no weighting	7.3%
SVD, $log(1 + f_{ij})$ weighting	60.1%
word2vec: CBOW	65.7%
word2vec: skip-gram	69.1%
GloVe	71.7%

Conclusions

- Vector semantics provides numerical estimates of meaning
- Solution to "poverty of the stimulus" problem
- Implications of individual differences?
- Ongoing battle between count-based and predictive models
- Applications:
 - cognitive models of semantics
 - computer science applications

Conclusions

Thank you