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Definition of meaning

What is meaning?
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Dictionary definitions

• man: “an adult human male”

• woman: “an adult human female”

• boy: “a male child or youth”

• girl: “a female child or youth”
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Semantic features

• man: [+HUMAN], [+MALE], [+ADULT]

• woman: [+HUMAN], [-MALE], [+ADULT]

• boy: [+HUMAN], [+MALE], [-ADULT]

• girl: [+HUMAN], [-MALE], [-ADULT]
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Semantic features

• Problems:

• features are discrete:

• hot: [+WARM]

• cold: [-WARM]

• lukewarm: [?WARM]

• human: [?WARM]

• potentially infinite set of features

• selection of features is subjective and labour-intensive
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Distributional semantics

“You shall know a word by the company it keeps”

John Rupert Firth
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Distributional semantics

• What does lamap mean?

• Where did you buy this lamap?

• Sit on the lamap and make yourself comfortable.

• After we moved the lamap, there was a round faded area
on the floor.
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Nomenclature

distributional semantics

=

vector semantics

=

vector-space semantics

9 | Introduction to R © 2013 Universität Tübingen



Why “vector semantics”?

• Word meanings are represented as a vector of numbers

• The numbers are based on co-occurrence frequencies
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Vector semantics: steps

• Steps:

1) Calculate co-occurrence matrix

2) Apply weighting scheme

3) Reduce dimensionality

4) Calculate similarity between semantic vectors
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Co-occurrence matrix

• Define co-occurrence of words with contexts

• Contexts can be:

• documents→ term-document matrix

• . . .

• words→ term-term matrix

• Retrieve co-occurrence frequency for all word-context pairs
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Types of co-occurrence matrices

• Term-document matrix:

• topic retrieval

• search results optimization

• Term-term matrix:

• semantic similarities between words

• semantic categorization

• sentiment analysis

• . . .
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Term-document matrix

text1 text2 text3 text4 text5 . . .
table 0 3 1 3 3 . . .
house 0 5 1 4 1 . . .
cat 0 0 7 2 0 . . .
banana 5 0 0 1 2 . . .
apple 4 1 1 4 2 . . .
. . . . . . . . . . . . . . . . . . . . .
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Term-term matrix

• Define a window size n (e.g.; 5)

• Context words are all words within n words of the target word

• Calculate a co-occurrence matrix
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Term-term matrix

. . .

“. . . the room there was a table, nicely dressed with a new . . . ”

“. . . he quickly had breakfast: a banana, a glass of juice and . . . ”

“. . . she spotted the dog, the cat ran into the room and”

. . .
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Term-term matrix

room breakfast school painting party . . .
table 1 1 2 5 4 . . .
house 3 0 1 2 2 . . .
cat 1 0 0 0 1 . . .
banana 0 4 0 2 1 . . .
apple 0 3 1 4 0 . . .
. . . . . . . . . . . . . . . . . . . . .
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Term-term matrix

• The window size n is a free parameter

• Window size determines the type of relations captured:

• smaller window: more syntactic

• larger window: more semantic

• Optimal window size depends on the application
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Semantic vectors

room breakfast school painting party . . .
table 1 1 2 5 4 . . .
house 3 0 1 2 2 . . .
cat 1 0 0 0 1 . . .
banana 0 4 0 2 1 . . .
apple 0 3 1 4 0 . . .
. . . . . . . . . . . . . . . . . . . . .
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Semantic vectors: geometry

room breakfast school painting party . . .
table 1 1 2 5 4 . . .
house 3 0 1 2 2 . . .
cat 1 0 0 0 1 . . .
banana 0 4 0 2 1 . . .
apple 0 3 1 4 0 . . .
. . . . . . . . . . . . . . . . . . . . .
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Semantic vectors: geometry
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Vector semantics: steps

• Steps:

1) Calculate co-occurrence matrix

2) Apply weighting scheme

3) Reduce dimensionality

4) Calculate similarity between semantic vectors
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Weighting

• Raw co-occurrence counts are suboptimal

• Adjust counts for frequency of terms in isolation

• Most common weighting scheme: point-wise mutual
information (PMI)
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PMI

• Compare observed frequency with expected frequency:

PMI = log2
P(w1,w2)

P(w1)P(w2)

• Positive value: co-occurrence frequency higher than expected
by chance

• Negative value: co-occurrence frequency lower than expected
by chance
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PPMI

• Negative values of PMI can only be established reliably with
massive corpora

• Solution: set negative values to zero

• Positive point-wise mutual information:

PPMI = max
(

0, log2
P(w1,w2)

P(w1)P(w2)

)
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PPMI

room breakfast school painting party
∑

table 1 1 2 5 4 13
house 3 0 1 2 2 8
cat 1 0 0 0 1 2
banana 0 4 0 2 1 7
apple 0 3 1 4 0 8∑

5 8 4 13 8 38

PPMIbanana,breakfast = max
(

0, log2

4
38

7
38 ∗

8
38

)
= 1.44
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PPMI

room breakfast school painting party
table 0 0 0.55 0.17 0.55
house 1.51 0 0.25 0 0.25
cat 1.92 0 0 0 1.25
banana 0 1.44 0 0 0
apple 0 0.83 0.25 0.55 0
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PPMI

• PPMI is biased towards low frequency words

• Low frequency words tend to have higher PPMI values

• Solution: Laplace smoothing

• Add a low number to all frequency counts
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Laplace smoothing

room breakfast school painting party
table 1 1 2 5 4
house 3 0 1 2 2
cat 1 0 0 0 1
banana 0 4 0 2 1
apple 0 3 1 4 0
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Laplace smoothing

room breakfast school painting party
table 2 2 3 6 5
house 4 1 2 3 3
cat 2 1 1 1 2
banana 1 5 1 3 2
apple 1 4 2 5 1
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PPMI (Laplace smoothing)

room breakfast school painting party
table 0 0 0.22 0.22 0.43
house 0.95 0 0.11 0 0.16
cat 0.85 0 0 0 0.47
banana 0 1.01 0 0 0
apple 0 0.58 0.11 0.43 0
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Weighting schemes

• PPMI is the most popular weighting schemes for
term-term matrices

• Alternative:

t-scorew1w2 =
P(w1,w2)− P(w1)P(w2)√

P(w1)P(w2)

• For term-document matrices:

tf-idfw1w2 = tfw1w2 ∗ log
(

N
dw1

)
where N is the total number of documents
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Vector semantics: steps

• Steps:

1) Calculate co-occurrence matrix

2) Apply weighting scheme

3) Reduce dimensionality

4) Calculate similarity between semantic vectors
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Dimension reduction

• Semantic vectors from co-occurrence matrices are:

• long

• sparse

• Use dimension reduction techniques to reduce the length of
semantic vectors

• Advantages:

• computationally efficient

• less overfitting

• capture latent semantic structure
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Latent semantic structure

• Higher order co-occurrences

• Example:

• Dolphins are intelligent.

• Whales are smart animals.

• The columns for intelligent and smart are correlated
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Latent semantic structure

• Can we re-organize the data such that:

1) the information in the co-occurrence matrix is retained

2) columns are no longer correlated

3) the number of columns is reduced

• Use single value decomposition (SVD)

• Applicable to both term-document and term-term matrices
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SVD

• Rotate the original n-dimensional data space:

• sequentially find dimensions with the greatest variance in
the original data

• restriction: dimensions have to be orthogonal to all
previous dimensions

• Dimensions in the rotated space are called principal
components
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SVD

• Later dimensions explain little variance in the data

• Reduce to the rotated semantic space to n dimensions

• Typical values for n: 100 to 5000
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Vector semantics: steps

• Steps:

1) Calculate co-occurrence matrix

2) Apply weighting scheme

3) Reduce dimensionality

4) Calculate similarity between semantic vectors
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Similarity between semantic vectors

• Semantic vectors are:

• rows in the (processed) co-occurrence matrix

• representations of word meanings

• meaningful only in the context of other semantic vectors
from the same semantic space

• We need a measure of the similarity of semantic vectors
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Semantic similarity metric

• Semantic similarity is inversely proportional to the distance
between semantic vectors

• Distance metrics:

• Euclidean distance

• Cosine similarity
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Euclidean distance
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Euclidean distance

• Euclidean distance between semantic vectors:

• banana - apple ≈ 2.24

• banana - house ≈ 4.47

• apple - house ≈ 3.61

• Euclidean distance between semantic vectors is
inversely proportional to semantic similarity

• Euclidean distance is sensitive to vector length
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Cosine distance
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Cosine distance
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Semantic similarity: cosine distance
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Cosine distance

• Angles between semantic vectors:

• banana - apple ≈ 26.56

• banana - house ≈ 63.43

• apple - house ≈ 36.87

• Angles between semantic vectors are inversely proportional
to semantic similarity
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Cosine distance

• Cosine of the angles between semantic vectors:

• banana - apple = cos 26.56 ≈ 0.89

• banana - house = cos 63.43 ≈ 0.45

• apple - house = cos 36.87 ≈ 0.80

• Cosines of angles between semantic vectors are proportional
to semantic similarity
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Cosine distance

• Efficient computation of cosine distance:

cosine(~w1, ~w2) =
~w1~w2

|| ~w1|| || ~w2||
=

∑N
i=n w1iw2i√∑N

i=n w1i
2
√∑N

i=n w2i
2

• Example:

• ~banana : 〈4,2〉, ~apple : 〈3,4〉

• cosine( ~banana, ~apple) =
∑

4 ∗ 3 + 2 ∗ 4√∑
42 + 22

√∑
32 + 42

≈ 0.89
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Reminder

room breakfast school painting party
table 1 1 2 5 4
house 3 0 1 2 2
cat 1 0 0 0 1
banana 0 4 0 2 1
apple 0 3 1 4 0
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Cosine similarity

table house cat banana apple
table 1 . . . . . . . . . . . .
house 0.79 1 . . . . . . . . .
cat 0.52 0.83 1 . . . . . .
banana 0.57 0.31 0.15 1 . . .
apple 0.72 0.42 0 0.86 1
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Cosine similarity: Laplace smoothing + PPMI

table house cat banana apple
table 1 . . . . . . . . . . . .
house 0.18 1 . . . . . . . . .
cat 0.39 0.94 1 . . . . . .
banana 0 0 0 1 . . .
apple 0.31 0.02 0 0.79 1
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Latent semantic analysis (LSA)
(Landauer & Dumais, 1997)

• Co-occurrence matrix: term-document matrix

• Weighting scheme: division of local weight by global weight:

• local weight: log (tfw1w2 + 1)

• global weight: −
∑N

j=1 p(i , j) ∗ log p(i , j)

where N is the number of documents

• Dimension reduction: SVD (300 dimensions)

• Distance metric: cosine distance

62 | Introduction to R © 2013 Universität Tübingen



Hyperspace analogue to language (HAL)
(Lund & Burgess, 1996)

• Co-occurrence matrix: term-term matrix (window size: 10)

• Weighting scheme: none

• Dimension reduction: none or entropy based selection of
columns

• Distance metric: Euclidean distance
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Predictive models

• Count-based models:

• traditional type of model in vector semantics

• semantic vectors derived from co-occurrence matrices

• computationally expensive

• Predictive models:

• current trend in vector semantics

• semantic vectors based on predictions of target words
or context words

• computationally efficient
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word2vec

• Predictive models: word2vec
(Mikolov et al., 2013)

• Two types of models:

• skip-gram (predict context words from target words)

• CBOW (predict target words from context words)

• Both types of models are feed-forward neural networks
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word2vec: skip-gram
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word2vec: CBOW
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Model objective

• Maximize the probabibility of the observed context words for
all words in the corpus:

argmax
θ

∏
wεT

[ ∏
cεC(w)

p(wc|wt ; θ)

]

where T is the corpus text and θ is the set of parameters
associated with the weight matrices W and W’

(Goldberg & Levy, 2014)

• How?
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Algorithm

• For each word in the corpus:

1) Present input (one-hot encoding)

2) Calculate output activations given current W and W’

3) Convert output activations to probabilities:

p(wci |wt) =
exp (acti)∑N
i=1 exp (actj)

where N is the number of word types in the corpus

4) Compare output to actual output

5) Adjust W and W’ through back-propagation
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Output

• Output: matrix W

• Semantic vectors are rows in W
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Optimization

• Computational tricks:

1) sub-sampling of frequent words

2) optimization of probability estimation

3) negative sampling
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How to use word2vec?

# 1) Get word2vec
svn checkout http://word2vec.googlecode.com/svn/trunk/
# Or:
git clone https://github.com/dav/word2vec
#
# 2) Install word2vec
make
# 3) Run word2vec:
word2vec -train corpus.txt -output vectors.txt -cbow 0 -size 200
# Some parameters:
# -cbow (1 = cbow, 0 = skip-gram)
# -window (window size; skip length between words)
# -size (number of dimensions in semantic space)
# -threads (number of threads to use)
# ...
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Reading semantic vectors into R

# Read file created by word2vec
# Created with skip-gram, window size of 5, 200 dimensions
vectors = read.table("vectors.txt",quote="",comment.char="",fill=TRUE)

# Remove first line (general information)
vectors = vectors[-1,]

# Define words
words = vectors[,1]

# Remove first column (words)
vectors = vectors[,-1]
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Reading semantic vectors into R

# Turn into matrix
vectors = as.matrix(vectors)
rownames(vectors) = words
colnames(vectors) = 1:ncol(vectors)

# Look at dimensions
dim(vectors)
# [1] 552403 200

# Save matrix
save(vectors,file="vectors.rda")
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Cosine distance

# Load semantic vectors
load("data/vectors.rda")

# Define function to calculate cosine similarity
cos.dist <- function(word1,word2,matrix) {

w1 = matrix[word1,]
w2 = matrix[word2,]
cos.dist = sum(w1*w2)/sqrt(sum(w1^2)*sum(w2^2))
return(cos.dist)

}
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Cosine distance

# Get semantic similarities
cos.dist(word1 = "apple",word2 = "banana", matrix = vectors)
# [1] 0.7725999
cos.dist(word1 = "apple",word2 = "house", matrix = vectors)
# [1] 0.04490028
cos.dist(word1 = "banana",word2 = "house", matrix = vectors)
# [1] 0.02936583
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Semantic neighbors

# Load library for parallel processing
library(parallel)

# Define function to get semantic neigbhors
cos.dist.all <- function(word1,matrix,cores=4) {

w1 = matrix[word1,]
distances = unlist(mclapply(1:nrow(matrix),FUN = function(i) {

w2 = matrix[i,]
cos.dist = sum(w1*w2)/sqrt(sum(w1^2)*sum(w2^2))
return(cos.dist)

},mc.cores=cores))
names(distances) = rownames(matrix)
distances = rev(sort(distances))
return(distances)

}
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Semantic neighbors

# Get semantic neighbors
neighbors = cos.dist.all(word1 = "apple", matrix = vectors)
neighbors[1:10]
# apple almond pumpkin pineapple pear
# 1.0000000 0.8486669 0.8482427 0.8440529 0.8420063
# avocado strawberry blueberry pecan pomegranate
# 0.8414042 0.8395716 0.8369698 0.8331580 0.8308719
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Semantic neighbors

# Get semantic neighbors
neighbors = cos.dist.all(word1 = "banana", matrix = vectors)
neighbors[1:10]
# banana almond mango pineapple coconut strawberry
# 1.0000000 0.7936759 0.7911360 0.7888999 0.7855046 0.7831195
# avocado pear apple melon
# 0.7775446 0.7727675 0.7725999 0.7714198
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Semantic neighbors

# Get semantic neighbors
neighbors = cos.dist.all(word1 = "house", matrix = vectors)
neighbors[1:10]
# house bungalow five-bedroomed townhouse
# 1.0000000 0.7794419 0.7021261 0.7019160
# apartment semi-detached four-bedroom mid-terrace
# 0.6956096 0.6914265 0.6902554 0.6888919
# five-bedroom three-bedroom
# 0.6817849 0.6805665
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Semantic clusters

• Automatically learn semantic categorization:

1) extract relevant semantic vectors

2) apply clustering technique
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Semantic clusters

• Example:

1) capitals of continents Europe, Asia and Africa

2) multidimensional scaling:

• calculate Euclidean distance between all points

• represent distance information in k dimensions
(here: k = 2)
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Semantic clusters
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Semantic clusters
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Semantic clusters
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Semantic clusters
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Evaluation

• Evaluation of semantic space models

• correlation with human ratings

• semantic similarity tasks (e.g.; synonym detection)

• analogy test
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Analogy test

• Semantic and syntactic analogies

• Semantic: Greece : Athens :: China : . . . ?

• Syntactic: good : better :: hard : . . . ?

• Model answer:

1) calculate ~v = ~Athens − ~Greece + ~China

2) return closest semantic neighbor of ~v
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Analogies: function

# Define function to get semantic neigbhors
cos.dist.analogy <- function(words,matrix,cores=4,nrows=30000) {

w1 = matrix[words[2],] - matrix[words[1],] + matrix[words[3],]
matrix = matrix[1:nrows,]
distances = unlist(mclapply(1:nrow(matrix),FUN = function(i) {

w2 = matrix[i,]
cos.dist = sum(w1*w2)/sqrt(sum(w1^2)*sum(w2^2))
return(cos.dist)

},mc.cores=cores))
names(distances) = rownames(matrix)
distances = rev(sort(distances))
distances = distances[which(!(names(distances)%in%words))]
return(distances)

}
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Analogies: semantic

# Get semantic neighbors
answer = cos.dist.analogy(words = c("Greece","Athens","China"),

matrix = vectors)[1]
answer
# Beijing
# 0.774342
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Analogies: semantic

# Get semantic neighbors
answer = cos.dist.analogy(words = c("Italy","Rome","Germany"),

matrix = vectors)[1]
answer
# Berlin
# 0.6691689
answer = cos.dist.analogy(words = c("Norway","Oslo",

"Germany"),matrix = vectors)[1:3]
answer
# Frankfurt Prague Berlin
# 0.5891469 0.5633364 0.5556203

91 | Introduction to R © 2013 Universität Tübingen



Analogies: syntactic

# Get semantic neighbors
answer = cos.dist.analogy(words = c("good","better","hard"),

matrix = vectors)[1]
answer
# harder
# 0.7518293
answer = cos.dist.analogy(words = c("good","better","great"),

matrix = vectors)[1:3]
answer
# bigger greater quicker
# 0.6109970 0.5557460 0.5388236
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Types of analogies

category example
capital Accra : Ghana :: Antananarivo : . . .
state Chicago : Illinois :: Houston : . . .
adverb amazing : amazingly :: quick : . . .
opposite certain : uncertain :: rational : . . .
comparative good : better :: hard : . . .
superlative big : biggest :: good : . . .
participle dance : dancing :: go : . . .
country adjective England : English :: Korea : . . .
past tense looking : looked :: seeing : . . .
plural hand : hands :: child : . . .
3rd person singular predict : predicts :: see : . . .
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Performance

• Compare performance of semantic vector models when
trained on a 6 billion word corpus:
(Pennington, Socher & Manning, 2014)

model performance
SVD, no weighting 7.3%
SVD, log(1 + fij) weighting 60.1%
word2vec: CBOW 65.7%
word2vec: skip-gram 69.1%
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Performance

• Are predictive models better than count-based models?

• Not necessarily:

• strong mathematical relationship between word2vec and
PPMI weighting

• implementation and hyperparameters may play a large
role
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Global vectors (GloVe)
(Pennington, Socher & Manning, 2014)

• New count-based model

• Idea: the ratio of co-occurrence probabilities provides
semantic information

probability solid gas water fashion
P(k |ice) large small large small
P(k |steam) small large large small
P(k |ice)/P(k |steam) >1 <1 ∼1 ∼1

• Frequency weighting: log(fw1w2 + 1)

• Adapt loss function to calculate semantic vectors that satisfy
ratios of co-occurrence probabilities
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Performance GloVe

• Compare performance of semantic vector models when
trained on a 6 billion word corpus:
(Pennington, Socher & Manning, 2014)

model performance
SVD, no weighting 7.3%
SVD, log(1 + fij) weighting 60.1%
word2vec: CBOW 65.7%
word2vec: skip-gram 69.1%
GloVe 71.7%
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Conclusions

• Vector semantics provides numerical estimates of meaning

• Solution to “poverty of the stimulus” problem

• Implications of individual differences?

• Ongoing battle between count-based and predictive models

• Applications:

• cognitive models of semantics

• computer science applications
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Conclusions

Thank you
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