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Two-layer networks, non-linear
separation, and human learning
R. Harald Baayen and Peter Hendrix
University of Tübingen

Ever since the criticism of the perceptron by Minsky & Papert (1969), two-layer
networks have been regarded as far too restricted for classification tasks requiring
more than the simplest linear separation. We discuss an example of a classification
task that in R×R is not only not linearly separable, but also not non-linearly sep-
arable. Yet, this classification task can be carried out with error-free performance.
To do so, it is mandatory to step outside the box of R×R, and we discuss how sev-
eral state-of-the-art methods from machine learning achieve this. We also show
that a two-layer network that makes use of the learning rule of Rescorla and Wag-
ner (1972) can solve this classification task, with different degrees of success (up to
100% accuracy) depending on the representations chosen for the input units. The
excellent classificatory performance of our two-layer network helps explain why
wide learning with two-layer networks with thousand and even tens of thousands
of input and output units is so succesful in predicting aspects of human implicit
learning, including the consequences of trial-by-trial learning for response laten-
cies in the visual lexical decision task.

1 Introduction

Several computational modeling studies suggest that two-layer networks with
connection weights estimated with the learning rule of Rescorla &Wagner (1972)
capture non-trivial aspects of lexical processing. In what follows, these networks
will be referred to as ‘wide learning’ networks, as they typically comprise just
two layers with, however, many tens of thousands of units.
Baayen et al. (2011) observed that the activations of lexical output units (concep-
tualized as pointers to semantic vectors in Milin et al. (2016)) in wide learning
networks with sublexical input units (e.g., letter bigrams) closely mirrored reac-
tion times in the visual lexical decision task. Regression models, one fitted to the
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reaction times, and one fitted to the reciprocally transformed activations, pro-
duced very similar results. The same predictors reached significance, with very
similar relative effect sizes. Even though the network did not have any form
units for morphemes or words, it correctly predicted the facilitatory effects of
constituent frequency and word frequency typically observed for English. When
the same kind of network was trained on Vietnamese, it correctly predicted the
inhibitory effect of constituent frequency that surprisingly characterizes com-
pound reading in this language (Pham & Baayen 2015). These results show that
wide networks with sublexical input units capture frequency effects that, depend-
ing on low-level orthographic distributional structure, can work out in very dif-
ferent ways, facilitatory in English but inhibitory in Vietnamese. Wide learning
networks have also been found to provide superior prediction for the brain’s elec-
trophysiological response to linguistic stimuli (Hendrix, Bolger & Baayen 2016)
and the details of eye-movements during reading (Hendrix 2015).
In classical accounts of lexical processing, the presence of a frequency effect is
treated as a litmus test for the existence of form representations. For instance, a
frequency effect for complex words is taken as proof of the existence in the mind
of form representations for complex words. Typically, such representations are
associatedwith resting activation levels that are assumed to depend on frequency
of use, and that are assumed to underlie the frequency effects observed in tasks
tapping into lexical processing. However, theories that posit such form units
have to explain how such units are accessed. This question seldom is reflected
on, probably because we are so familiar with being able to look up words in a dic-
tionary, or to search for patterns in files, that we take for granted that accessing
units is trivial. However, models such as the interactive activationmodel (McClel-
land & Rumelhart 1981) were developed precisely because human look-up has all
kinds of properties that are foreign to look-up with the algorithms implemented
on our computers. Wide learning networks offer an alternative algorithm that,
like the interactive activation model, targets an algorithmic approximation of hu-
man look-up. Importantly, frequency effects (and also similarity effects) come for
free with wide learning, and arise as a consequence of continuous error-driven
optimization of lexical discrimination. There no longer is a need for positing
counters in the head such as resting activation levels.
Current research is revealing that a range of quantitative measures derived from
the connection weights of wide learning networks also generate precise predic-
tions about trial-to-trial learning in the visual lexical decision task. Figure 1
presents three measures of goodness of fit, the AIC, the ML score, and the (ad-
justed) R-squared, for generalized additive models fitted to the data of a partici-
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Figure 1: Three measures of goodness for the GAMs fitted to lexical decision re-
action times.

pant contributing responses to the British Lexicon Project (Keuleers et al. 2012).
Goodness of fit is worst for a classical model with as predictors the conventional
measures of frequency of occurrence and neighborhood density. Model predic-
tions improve when these classical measures are replaced by measures derived
from the 15,106 × 30,117 weight matrix of a network trained on the British Na-
tional Corpus. Performance is best when this network is allowed to continue
learning as it is presented with words and nonwords, made available in exactly
the same order as in the lexical decision experiment.
These results indicate that wide networks with the Rescorla-Wagner learning
rule provide a useful computational window on human lexical processing, com-
plementing the strong support for this learning rule in the literature on animal
learning (Siegel & Allan 1996) and more recently also in computational evolu-
tionary biology (Trimmer et al. 2012).
However, in the light of the criticism by Minsky & Papert (1969) of simple two-
layer perceptrons as being incapable of approximating a wide range of useful
functions, the excellent performance of wide learning networks is surprising.
Would performance have been better with deep learning, or with Bayesian up-
dating? Is a two-layer network, however wide, actually too simple to be taken
seriously for the computational modeling of lexical processing?
In what follows, this issue is addressed by investigating a simple but non-trivial
classification problem and comparing the performance of wide learning with
three state-of-the-art classifiers: support vector machines, deep learning, and
gradient boosting machines.
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2 A non-linearly separable classification problem

The left panel of Figure 2 presents a classification problem that is not only not
linearly separable, but also not non-linearly separable. In a grid of 50× 50 pixels,
260 (highlighted in black) belong to class A and the remaining 2240 (in gray)
belong to class B. In the R×R input space, this classification problem cannot be
solved by means of linear or non-linear boundary functions. There is no straight
line that separates the grey dots from the black dots, nor is there a sensible curve
that would achieve separation.
Three machine learning techniques were applied to this classification task. Deep
learning, using the h2o package (Fu et al. 2015), which provides an adaptive learn-
ing rate per neuron aswell as regularization through shrinkage and dropout, with
1 layer of 100 hidden units, reached an accuracy of 99.4%. A gradient boostingma-
chine (fit with 20 trees with amaximum tree depth of 20, using xgboost package
(Chen, He & Benesty 2015)) provided perfect classification with only minor dete-
rioration under 10-fold cross-validation. A support vector machine (using svm in
the e1071 package (Meyer et al. 2015), with a second-order polynomial as a ker-
nel) performed quite well on the full data, but performance dropped below that
of the other two methods under 10-fold cross-validation (cf. Table 1). The success
of the support vector machine indicates that there exists a transformation of the
R× R input space in which the two classes of data points are to a considerable
extent linearly separable.
A very different transformation of the input space is achieved by moving from
coordinates in R × R to one-hot encoding for rows and columns, resulting in
two sets of 50 units representing row and column identifiers. Moving to this
binary 100-dimensional representation (henceforth B100) allows all three above-
mentioned machine learning techniques to achieve perfect classification on the
full data set, and to retain a high accuracy under 10-fold cross-validation (cf. Ta-
ble 1).
A wide learning network with as cues the row and column identifiers performs,
with a single pass through the data, with 96.0% accuracy (F -score 0.81, preci-
sion and recall both 0.81), with the expected decrease in performance under 10-
fold cross-validation (accuracy: 95.0%; F -score 0.71, precision 0.88, recall 0.61).1

Although clearly lagging behind the gradient boosting machine and the deep

1 As wide learning does not make use of nonlinear activation functions at the output layer to
obtain a firing versus not firing response, evaluation of model performance proceeded by col-
lecting the activations for all 2500 pixels, and setting a threshold such that the k pixels with
the highest support for class A, where k is the cardinality of A, are assigned to class A. The
same threshold was used under cross-validation.
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Figure 2: A non-linear classification problem. Left panel: points in a Cartesian
grid (x = 1, 2, . . . , 50; y = 1, 2, . . . , 50). Right panel: the same points
in a 100-dimensional space using one-hot encoding, with re-arranged
rows and columns.

learning network, it is not the case that wide learning is a total failure — to the
contrary, it gets quite far, performing better under 10-fold cross-validation than
the support vector machine.

Figure 3: Classification performance for the generalized linear model (left), the
generalized linear model with lasso (center), and wide learning (right)
predicting class from row and column identifiers.

To appreciate better what wide learning achieves, first note that the move from
R×R to B100 renders the classification problem invariant to exchanges of pairs
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Table 1: Accuracy for four algorithms, applied to the complete data set and
with 10-fold cross-validation, with and without re-ordering of rows and
columns. deep: deep learning; gbm: gradient boosting machine; svm:
support vector machine; wide: 2-layer wide learning network.

Accuracy Method Input Space

complete cv-10

0.994 0.986 deep R2

1.000 0.994 gbm R2

0.982 0.896 svm R2

1.000 0.994 deep B100

1.000 0.994 gbm B100

1.000 0.949 svm B100

0.960 0.950 wide B100

1.000 0.989 wide hub features

of rows, and to exchanges of pairs of columns. One re-arrangement of rows
and columns results in a configuration with all points of class A arranged in
a circular band, as shown in the right panel of Figure 2. This rearrangement,
possible thanks to ‘domain knowledge’, shows that there is considerably more
structure in the data than is apparent to the eye in the scatter in the left panel of
Figure 2.
Now consider Figure 3. The left panel presents the predictions (in blue) of a
generalized linear model (left), a generalized linear model with lasso correction
(center), and a wide learning network (right). Each model was asked to predict
the class of a data point from its row and column identifier. A logistic generalized
linear model correctly detected that the points belonging to class A are located
within a circle, but failed to exclude the points in its center, and lacked precision at
the four outer edges of the circular band. Importantly, this linear model achieves
considerable separation of the two classes in B100 that, if transformed back into
R× R, would classify as non-linear.
Improved classification accuracy can be obtained by shrinking the β coefficients
of the glm through lasso (ℓ1-norm) regularization (using glmnet, Friedman, Hastie
& Tibshirani (2010), run withmaxit = 300). The center panel shows that all points
in the inner disk are now correctly assigned to class B. Yet, the model remains
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somewhat imprecise at the edges.
The third panel of Figure 3 illustrates the performance of wide learning, which
succeeds in correctly assigning most points in the inner circle to class B, while
reducing slightly the imprecision at the edges that characterizes the glm with
lasso regularization. Again, we see that a technique that is known to be restricted
to linear separation in R× R achieves good separation in B100.
Of special interest is that this classification performance is achieved without
knowledge of the topology of the circular band. All that is available to the models
is, for each data point, the identifiers for its row and column. In other words, we
can re-arrange the rows and colums back into the scatter of the left panel of Fig-
ure 2, and a majority of data points would still be correctly classified. This shows
that the representation of the problem in R × R is a highly specific one that is
restricted to a unique configuration of data points, whereas the representation
in B100 covers the full set of 50! × 50! permutations of rows and columns. The
classification accuracy of the glm and of the wide learning network is exactly
the same for all these alternative configurations.
However, the accuracy of wide learning can be improved considerably bymaking
use of the fact that the re-arrangements share underlyingly the topology of the
circular band. This topology makes it possible to do error-free classification with
just four features. Let a data point be a hub if all of its eight surrounding data
points belong to class A, and let a data point be a hub neighbor if at least one
of the eight surrounding data points is a hub. We now define four features, is a
hub, is not a hub, is a hub neighbor, and is not a hub neighbor. When each
data point is characterized by the values of these four features, a wide learning
network yields error-free classification performance with a single pass through
the data. Under leave-one-out cross-validation performance remains error-free.
Ten-fold cross-validation with hub features requires special care, as missing data
make it impossible to maintain the criterion that a hub should have exactly 8
neighbors. When the neighbor count for a hub is relaxed to 7 during training
and to 4 during testing, accuracy remains at 99% (F -score 0.95, precision 0.94,
recall 0.96).
Figure 4 presents two further classification tasks for which wide learning with
hub features performs with a very high accuracy. The pattern in the left panel
was explicitly characterized by Minsky & Papert (1969) as impossible for percep-
trons to classify, which is correct when the problem is formulated in R×R, but
not necessarily true when the problem is reformulated in other spaces. A wide
learning network with hub features solves this classification problem in its stride,
with error free performance also under leave-one-out cross-validation, but just
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the representation in B100 already allows for a classification accuracy no less
than 96.9% (F -score 0.88, precision 0.89, recall 0.87).
Interesting is also the ‘open cross’ task in the right panel of Figure 4. We failed
to obtain sensible classification performance for R×R and for B100 under cross-
validation with gradient boosting machines and support vector machines (all
points assigned to the ‘baseline’ class B). Deep learning on R × R with a two
layers of hidden layer, the first with 100 units and the second with four units,
performed much better (accuracy 94.2%, 93.4% under 10-fold cross-validation),
but upon inspection systematically assigned all class B data points within the
open squares that build the cross to class A under cross-validation. Deep learn-
ing on B100 was a total failure (F -score = 0.28 under 10-fold cross-validation).
Wide learning in B100 failed miserably as well (F -score 0.19), but wide learning
with hub features was highly effective, with accuracy above 99% both for the full
data set, as well as under leave-one-out cross-validation.

Figure 4: Two further non-linear classification set-ups. Accuracies in parenthe-
ses for wide learning with hub features for the full data set, for 10-fold
cross-validation, and for leave-one-out cross-validation.

3 Discussion

To solve classification problems in R × R that are not linearly separable and
also not non-linearly separable, it is crucial to step outside the box. Gradient
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boosting machines achieve this by sidestepping the problem of finding a bound-
ary function, and let classification trees do the best they can with local splits,
while letting later trees deal with the classification errors of earlier trees. Sup-
port vector machines step outside the box by projecting the data points into a
higher-dimensional space in which the classes are linearly separable. With a
hundred hidden units, deep learning also finds a solution, thanks to regulariza-
tion through shrinkage and dropout. (A three-layer network with 100 hidden
units trained simply with backpropagation fails to assign any datapoint to the
A class.) These 100 hidden units constitute a new space that re-represents the
original R × R space in such a way that the last two layers of the three-layer
network can achieve excellent (linear) separation of the two classes.
Moving from a representation inR×R to a representation with row and column
identifiers is yet another way of stepping outside the box. For wide learning
with the Rescorla-Wagner rule, this re-representation is a necessary step because
input units are restricted to discrete feature detectors that are either on or off.
Given this re-representation, wide learning can achieve considerable separation
of data points that are not even non-linearly separable, and in this mirrors the
performance of a logistic generalized linear model. But deep learning and the
support vector machine also also thrive with this re-representation, reaching
100% accuracy on the full data and improved cross-validation scores. Because this
re-representation is invariant to order, re-arranging row and column identifiers
allows the underlying topology to emerge, which in turn makes an even simpler
re-representation with hub features possible.
The present results clarify that it does notmakemuch sense to suppose that a non-
trivial wide learning network (such as the abovementioned network with 15,106
input units and 30,117 output units) is handicapped by being limited to ‘linear
separation’. This handicap holds for Rn, but by re-representing the classification
problem in some higher factorial space Bn+m,m ≫ n, a wide learning network
can achieve separation that, albeit linear in Bn+m, would count as non-linear
when projected back into Rn. It follows that what a two-layer wide learning
network can or cannot achieve depends crucially on the input representations.
Deep learning networks can discover good input representations at their (final)
hidden layer, but hand-crafted representations building on domain knowledge
can also be highly effective.
Given the strong support for the Rescorla-Wagner learning rule in the literature
on animal learning (Siegel & Allan 1996) and evolutionary biology (Trimmer et
al. 2012) and its success in predicting details of human lexical processing with
input and output features that have a clear and transparent linguistic interpreta-
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tion, we think it makes sense to delve deeper into the benefits of going wide for
understanding human error-driven learning.
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