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Abstract 

 

Recent studies have documented frequency effects for word n-grams, independently of word unigram frequency. 

Further studies have revealed constructional prototype effects, both at the word level as well as for phrases. The 

present speech production study investigates the time course of these effects for the production of prepositional 

phrases in English, using event related potentials (ERPs). For word frequency, oscillations in the theta range 

emerged. By contrast, phrase frequency showed a persistent effect over time. Furthermore, independent effects 

with different temporal and topographical signatures characterized phrasal prototypicality. In a simulation study 

we demonstrate that naive discrimination learning provides an alternative account of the data that is as least as 

powerful as a standard lexical predictor analysis. The implications of the current findings for models of language 

processing are discussed. 

 

Keywords: ERP, picture naming, prepositional paradigm, phrase frequency, relative entropy, discrimination 

learning, Naive Discriminative Reader 
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Introduction  

 

 N-gram frequency is the frequency of a phrase of length n. In recent work, Arnon & Snider (2010) 

showed that phrasal decision latencies for high frequency phrases such as “all over the place” are shorter than 

those for low frequency phrases, such as “all over the city”. This effect did not reduce to frequency effects of 

single words or smaller n-grams. The word n-gram effect has been replicated in a number of recent studies 

(Bannard & Matthews, 2008; Shaoul et al., 2009, Tremblay et al., 2010; Tremblay & Baayen, 2011; Siyanova-

Chanturia et al., 2011; Baayen et al., 2011). 

 Much, however, remains unclear about the nature of the n-gram frequency effect. Arnon & Snider 

(2010:76) indicate that: “At a minimum, the current findings add multi-word phrases to the units that influence 

processing in adults”. Bannard & Matthews (2008) take the argument one step further and interpret their finding 

that young children process frequent phrases (e.g.; “a drink of milk”) faster than infrequent phrases (e.g.; “a 

drink of tea”) as “evidence for whole-form storage” and “representations at different levels of granularity”. 

An interpretation of n-gram frequency effects in terms of representations for n-grams fits well with 

theoretical approaches like data-oriented parsing (Bod, 2006) or memory-based learning (Daelemans & Bosch, 

2005), in which large numbers of multiword sequences (or parse trees for these sequences) are stored in memory 

and optimal performance is ensured through on-line generalization over stored sequences. In these exemplar-

based approaches n-gram frequency effects are directly related to the n-gram representations that are stored in 

memory. 

 Storing each multiword sequence and its associated frequency in memory, however, is problematic for a 

number of reasons. Given the Zipfian shape of frequency distributions, the number of unique n-grams is 

extremely large. The British National Corpus, for instance, contains 40 million unique word trigrams. Even if the 

storage of hundreds of millions of word n-grams were neuro-biologically possible, on-line processing over an 

instance space of this size would be very time-consuming. Memory-based learning as implemented in TiMBL 

(Daelemans, Zavrel, Sloot & Bosch, 2007), for instance, uses information gain trees (Daelemans, Bosch & 

Weijters, 1997) as a compression algorithm to reduce the computational demands of on-line searches. 
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 An additional problem with n-gram representations is that it is not immediately clear what the function 

of such representations would be. Positing representations as a locus for a frequency “counter in the head” seems 

unconvincing (see, e.g.; McClelland & Rumelhart (1981) and Norris & McQueen (2008) for models that 

integrate word unigram frequencies as a priori-probabilities). The application of shortlists in interactive 

activation models (Norris, 1994) raises further questions about the necessity of n-gram representations. These 

models use shortlists of stored candidates as a computational shortcut that allows for simulations with realistic 

input sizes. The success of shortlists in these types of models indicates that at least some stored multiword 

sequences are not relevant for on-line processing. 

These concerns have led researchers to propose alternative explanations for the effect of n-gram 

frequency. Tremblay et al. (2011) suggest that n-gram frequency effects may reflect past experience with 

(de)compositional processing. Such an interpretation fits well evidence from the learning literature 

demonstrating that learning is a dynamic discriminative process that is associative in nature (see Ramscar et al. 

(2010)). Holistic linguistic representations may be beneficial at the earliest stages of learning (Dabrowska, 2000; 

Tomasello, 2003), but additional experience will weaken the associations between the components of these 

holistic initial representations and lead to an increased importance of decomposed, lower-level representations. 

Learning theory therefore predicts that the adult language processing system is less likely to have separate 

representations for multiword units (see Dabrowska (2000), Arnon & Ramscar (2012) for a computational 

simulation of this process). 

Baayen et al. (2013a) provided computational support for such an interpretation of the n-gram frequency 

effect by successfully simulating the findings of Arnon & Snider (2010) in a full decomposition model based on 

discrimination learning. The Naive Discriminative Reader (NDR) model used in their simulations has no 

representations beyond the simple word level. In the NDR model the n-gram frequency effect arises as a result of 

the associative learning process that maps orthographic input units (letters and letter combinations) to semantic 

outcomes (word meanings). A high frequency phrase such as “all over the place” is read faster than a low 

frequency phrase such as “all over the city”, because the letters and letter combinations in “all over the place” 

are more associated with the meanings ALL, OVER, THE and PLACE than the letters and letter combinations in 

“all over the city” are associated with the meanings ALL, OVER, THE and CITY. 
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Thus far we discussed effects of the frequency of multi-word sequences. The prototypicality of phrases 

is likewise reflected in behavioral measures of language processing. Several studies have documented 

prototypicality effects at the word level, using relative entropy to gauge the similarity of an exemplar to its 

constructional prototype (Milin et al., 2009a; Milin et al., 2009b; Kuperman et al., 2010). Above the word level, 

relative entropy effects have been observed for English prepositional phrases (Baayen et al., 2011). Given 

estimated probabilities p (relative frequencies) of prepositional phrases for a given noun and estimated 

probabilities q (relative frequencies) of prepositions across all nouns, prepositional relative entropy is defined as  

 

Relative	Entropy	 = 	 𝑝1 ∗ 𝑙𝑜𝑔6
𝑝1
𝑞1

8

1	9	:

	 (1) 

 

where n is the number of prepositions taken into account. 

The relative entropy measure compares how similar the distribution of prepositional phrase frequencies 

for a given noun is to the distribution of preposition frequencies in the language as a whole. Values for relative 

entropy are low when the prepositional phrase frequency distribution for a given noun (exemplar) is similar to 

the overall prepositional phrase frequency distribution (prototype) and high when the prepositional phrase 

frequency distribution for a given noun differs substantially from the overall prepositional phrase frequency 

distribution. Higher relative entropies are typically associated with greater processing costs. Nouns that use 

prepositions in an atypical way, for instance, take longer to process than nouns that use prepositions in a typical 

way (Baayen et al., 2011). 

 The effect of prepositional relative entropy implies that the language processing system is sensitive to 

the distributional properties of a noun’s prepositional paradigm vis-à-vis the distribution of prepositional 

frequencies in the language as a whole. As such, the prepositional relative entropy effect poses a challenge to 

exemplar-based models. Accounting for the effect of prepositional relative entropy in such models involves three 

assumptions. First, in order for the distributional properties of a noun’s prepositional paradigm to be available, 

prepositional phrases would need to be stored in the mental lexicon. We outlined the problems associated with 

the assumption of representations for multiword sequences above. 
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Second, the frequency distribution of the prototype (i.e., the frequency distribution of prepositions across 

all nouns) would need to be available. Storing the frequency distribution of the prototype would further increase 

the memory demands on the language processing system. In addition, it is unclear what function prototype 

representations would have beyond accounting for the effect of relative entropy. Perhaps the frequency 

distribution of prepositions in the language as a whole provides a reasonably accurate estimation of the 

frequency distribution of prepositions across all nouns that would obviate the need for the explicit storage of  

prototype frequency distributions. 

Third, even if the language processing system contains information about exemplar and prototype 

frequency distributions for prepositional phrases, the distance between these distributions would need to be 

computed on-line. Given that Baayen et al. (2011) observed effects of prepositional relative entropy in isolated 

word reading, this on-line computation would need to be carried out not only when processing prepositional 

phrases, but any time a noun is encountered. Furthermore, if we assume that the distance between exemplars and 

their prototype is computed on-line for prepositional phrases, do we need to posit similar computations for other 

types of constructions by analogy? 

Unlike exemplar-based models, discrimination learning does not need to posit any representations 

beyond the basic word level to account for relative entropy effects. Baayen et al. (2011) showed that the NDR 

model successfully captures the fact that nouns with high prepositional relative entropies (i.e.; nouns that use 

prepositions in an atypical way) take longer to process than nouns with low relative entropy. In the NDR model 

the effect of relative entropy arises as a straightforward consequence of way the distributional properties of 

English shape the associations between orthographic input cues and semantic outcomes across sequences of 

words. 
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Experiment 

 

In what follows we present the results of a primed picture naming experiment that gauges the effects of 

phrasal frequency and phrasal prototypicality for prepositional phrases using event-related potentials (ERPs). 

The current work seeks to extend previous findings in two ways. First, the experimental results for phrase 

frequency and relative entropy discussed thus far were mostly obtained in chronometric studies. While these 

studies demonstrated that both frequency and relative entropy influence how (prepositional) phrases are 

processed, they offer little information on the temporal details of these effects. The temporal resolution of ERPs 

will allow us to gauge the millisecond-by-millisecond temporal development of the phrase frequency and 

relative entropy effects. In addition, while the spatial resolution of ERPs is limited, the current work may provide 

us with a general idea about the topographical dynamics of these effects. The first goal of the current study, 

therefore, is to obtain a more detailed picture of the effects of phrase frequency and relative entropy that arise 

during prepositional phrase processing. 

The second goal of the current work is to find out to what extent the temporal and spatial dynamics of 

the ERP signature of the phrase frequency and relative entropy effects can be replicated in the NDR model. The 

discriminative learning approach adopted by the NDR model has been shown to capture a wide range of effects 

documented in the chronometric experimental literature, including the effects of phrase frequency and phrase 

prototypicality. Predicting the ERP signal following the presentation of a prepositional phrase stimulus, however, 

involves predicting a signal as it evolves over both time and space. This stringent test of the NDR model will 

help gain more insight into the strengths and shortcomings of the discriminative learning approach to language 

processing. 

The setup of the current experiment closely resembles the simulations by Baayen et al. (2011). 

Participants are presented with a preposition plus definite article prime, followed by a picture of a concrete noun 

that they have to name as fast and accurately as possible. The use of a primed picture naming paradigm might 

seem at odds with our interest in phrase frequency and prototypicality effects. Technically, there is no need for 

participants to read the preposition plus definite article primes and therefore to process the stimuli at the phrase 

level. 
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We decided to nonetheless use a picture naming paradigm for a number of reasons. First, while 

prepositional relative entropy is a measure of constructional prototypicality, it describes how prototypical a given 

noun’s use of prepositions is. The effect of relative entropy is therefore best measured at the noun. In the current 

picture naming paradigm the earliest possible point in time where noun processing can take place is precisely 

defined as the moment the target noun picture appears on the screen. If we were to present the prepositional 

phrases as a whole it would be much harder to identify the temporal onset of target noun processing. 

A related reason for using a primed picture naming paradigm is that it reduces the temporal overlap 

between processes related to the preposition and definite article and processes related to the noun. Experienced 

readers are able to read prepositional phrases in a few hundred milliseconds. Nonetheless, as will become 

apparent soon, ERP effects related to the lexical properties of a given word can last many hundreds of 

milliseconds (see, e.g.; Kryuchkova et al. (2011)). This implies that there is a temporal overlap between 

processes related to the different words in the prepositional phrase. In the current setup, the temporal distance 

between the onset of the prime and the onset of the target is 2000 ms. This allows a substantial part of the initial 

processing of the preposition and definite article to complete prior to the presentation of the target noun. 

A third reason for using the current experimental setup is that the proof is in the pudding as far as phrase 

frequency effects are concerned. As noted above, the current paradigm does not guarantee that the information in 

the preposition plus definite article primes and that the target noun picture is integrated to obtain a phrase-level 

understanding of the stimulus. It is therefore possible that the current setup does not allow us to replicate the 

phrase frequency effect. If we do observe an effect of phrase frequency, however, this unequivocally entails that 

the stimuli were processed at the phrase level. 

The first part of what follows describes in more detail the experiment outlined above, the analysis 

techniques used to analyze the data and the results of the experiment. In the second part, we will present a 

simulation study in which we try to replicate the temporal and spatial dynamics of the observed effects in the 

discriminative learning framework of the NDR model.  
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Methods 

 

Participants 

 Thirty participants took part in the experiment. All participants were students of the University of 

Alberta in Edmonton and native speakers of English. Their mean age was 20.4 (sd: 4.7). Nineteen participants 

were female, eleven were male. All participants were right-handed, had normal or corrected to normal vision and 

did not have a history of neurological illness. Participants received partial course credits for their participation. 

 

Materials 

 Sixty-eight concrete nouns were paired with photographs, depicting the referent of these nouns on a 

beige background. For each of the nouns, four three-word prepositional phrases were constructed, consisting of a 

preposition, the definite article “the” and the noun itself (e.g., “with the saw”, “against the strawberry”). 

 Phrases were selected on the basis of trigram frequencies as available in the Google 1T n-gram data 

(Brants & Franz, 2006). Trigram frequencies for all prepositional phrases consisting of a preposition, the definite 

article “the” and one of the 68 concrete nouns were extracted. For a given noun, the phrases at 25%, 50%, 75% 

and 100% of the phrase frequency distributions were included as stimuli. For the noun saw, for instance, this 

procedure generated the experimental items “into the saw” (frequency: 2061), “from the saw” (5358), “to the 

saw” (9781) and “with the saw” (20464). The total number of stimuli was 272. 

 Only prepositions from a pre-compiled list of 35 prepositions were included in the trigram frequency list. 

Selecting the phrases at the quantiles of the phrase frequency distribution led to 29 of these prepositions being 

used in the experiment. As a result of this selection procedure, there was a significant correlation between 

preposition frequency and number of times a preposition was used in the experiment (r = 0.85, p < 0.001), with 

frequent prepositions such as “in” (44 times) or “on” (23 times) being included more often than infrequent 

prepositions such as “under” (6 times) or “against” (5 times). The experience with prepositions in the context of 

the current experiment therefore matches the experience with prepositions in the language as a whole. 
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Design 

 The experiment consisted of 272 picture naming trials. Prior to the experiment, a practice phase was 

included, consisting of 10 items. The order in which the stimuli were presented was randomized between 

participants. The dependent variable was the ERP signal measured at 32 locations on the scalp. The independent 

variables were Word Length, Word Frequency, Phrase Frequency and Relative Entropy. 

Word Length is the length of the target noun in letters. Word Frequency and Phrase Frequency are the 

frequency of the target noun (e.g., “saw”) and phrase (e.g., “with the saw”) in the Google n-gram data. Word 

Length, Word Frequency and Phrase Frequency were log-transformed to remove a rightward skew from the 

predictor value distribution. Relative Entropy was calculated on the basis of the Google n-gram phrase 

frequencies for all 272 nouns used in the experiment and all 35 prepositions in the precompiled list of 

prepositions. Prepositional phrase frequencies were converted to relative frequencies (i.e.; estimated 

probabilities) for each noun and across all nouns to obtain estimated probability distributions p (for a given 

noun) and q (across all nouns). Relative Entropy was then calculated as the Kullback-Leibler divergence between 

p and q (see Equation 1). 

Prior to analysis, we removed predictor outliers (i.e.; predictor values further than two standard 

deviations from the mean) from the data. This resulted in the exclusion of 1.53% of predictor values for Word 

Length, 4.61% of all predictor values for Word Frequency, 5.76% of all predictor values for Phrase Frequency 

and 4.61% of all predictor values for Relative Entropy. Outliers for Phrase Frequency included the 2.76% of all 

phrases that did not occur in the Google n-gram data, such as “up the sock” or “into the pencil”. Table 1 shows 

the range and adjusted range for all independent variables. In addition, it presents the mean, median and standard 

deviation of the predictor distributions after outlier removal. 

 

[INSERT TABLE 1 AROUND HERE] 
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Phrase Frequency was significantly correlated with Word Frequency (r = 0.42) and Preposition 

Frequency (the Google n-gram frequency of the preposition, r = 0.27). To ensure that any effect of Phrase 

Frequency was not an artifact of unigram frequency effects we therefore decorrelated Phrase Frequency by 

taking the residuals from a linear model regressing Phrase Frequency on Word Frequency and Preposition 

Frequency. The correlation of the original Phrase Frequency measure and the residualized Phrase Frequency 

measure was 0.77. 

 Given the nature of the bigrams in the current phrases the correlation of bigram frequencies with 

unigram frequencies was extremely high. Preposition plus definite article (e.g. “with the”) bigram frequencies 

correlated 0.96 with Preposition Frequency, whereas the correlation of definite article plus noun (e.g.; “the saw”) 

bigram frequencies with Word Frequency was 0.89. Both bigram frequencies, however, were not significantly 

correlated with residualized Phrase Frequency (r = 0.07, r = 0.11). We therefore did not decorrelate Phrase 

Frequency from the component bigram frequencies.1 

 Relative Entropy was significantly correlated with Word Frequency (r = -0.40) and Phrase Frequency (r 

= -0.22). We therefore decorrelated Relative Entropy from Word Frequency and Phrase Frequency by taking the 

residuals of a linear model regressing Relative Entropy on Word Frequency and Phrase Frequency. The 

correlation between the original and residualized Relative Entropy measures was 0.92. 

 We end this section with a methodological note on decorrelation. In the design described here, we 

decorrelated predictor A from predictor B by taking the residuals of a linear model regressing predictor A on 

predictor B. If we consider the example of decorrelating Phrase Frequency from Word Frequency, this procedure 

removes the variance shared by both frequency measures from Phrase Frequency. It does, however, not remove 

the same variance from Word Frequency. Residualizing Phrase Frequency from Word Frequency as done here 

allows us to determine whether there is an effect of Phrase Frequency over and above an effect of Word 

Frequency. It does, however, not allow us to conclude whether or not the effects of Word Frequency and Phrase 

Frequency are different in nature. To allow for such a conclusion, a complete decoupling of both predictors is 

necessary. 
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 To completely decouple Word Frequency and Phrase Frequency we carried out a post-hoc analysis. In 

this analysis we used a reverse decorrelation procedure in which we decorrelated Word Frequency from Phrase 

Frequency. Residualized Word Frequency correlated 0.91 with the original Word Frequency measure. We then 

re-ran all reported models using the raw non-residualized Phrase Frequency measure and the decorrelated Word 

Frequency measure. The results for residualized Word Frequency and raw Phrase Frequency in this post-hoc 

analysis are reported after discussing the effects of the original raw Word Frequency and residualized Phrase 

Frequency measures introduced above and demonstrate that the effects reported here reflect true qualitative 

differences between the effects of Word Frequency and Phrase Frequency. 

 

Procedure 

 Data were recorded from 32 Ag/AgCl active electrodes (Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FC5, 

FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz, O2), which 

were mounted on an electrode cap (BioSemi, international 10/20 system). Reference electrodes were placed at 

the left and right mastoids. The EOG was recorded using electrodes below and above the left eye and at the outer 

canthi of both eyes. Electrode cap sizes varied from 54 to 60 cm between participants to allow for an optimal fit. 

 Data were sampled at 8,102 Hz using a BioSemi Active II amplification system. Prior to analysis, the 

signal was downsampled to 256 Hz, band-pass filtered from 0.5 to 50 Hz, baseline corrected (-200 to 0 ms 

interval) and re-referenced to the average of the left and right mastoids using Brain Vision Analyzer (version 

1.05). In addition, the signal was corrected for eye-movements and eye blinks using the icaOcularCorrection 

package for R (Tremblay, 2010). 

 Verbal responses were recorded using a microphone (Sennheiser) and response box including a voice 

key (Serial Response Box) for the E-Prime experimental software package (version 2.0.1). The same package 

was used to present the stimuli on a 17 inch CRT monitor using a 1024 by 768 resolution. 

 A fixation mark was shown for 1000 ms prior to each trial. Next, participants were presented with a 

preposition plus definite article prime (e.g., “in the”) for 1000 ms. This screen was followed by another 1000 ms 

fixation mark screen. We then presented the photograph depicting the target noun (512 by 384 pixels) for 3000 

ms. Participants were instructed to name the target noun, as depicted by the photograph. They were instructed to 



 13 

respond as fast a possible, while retaining accuracy. In addition, participants were instructed to limit eye blinking 

and body movements to a minimum. 

 All fixation marks and texts were presented in white Courier New 24 point font. All fixation marks, texts 

and photographs were presented in the center of the screen against a black background. Each photograph was 

followed by a 2000 ms pause prior to the next stimulus, to allow the EEG signal to return to baseline. The 

experiment had a duration of about 40 minutes, excluding a preparation phase of about 30 minutes. Halfway 

through the experiment, participants were given a break to prevent fatigue. 

 

 

Analysis 

 

 Prior to analysis we removed 12 items corresponding to 3 problematic photographs from the data, as 

error rates were high for these photographs across participants. In addition, we removed incorrect naming 

responses from the data (7.61%). No averaging over participants or items was done prior to analysis. No 

channels were excluded from the analysis. 

 

Generalized Additive Models (GAMs) 

 This experiment examines the effect of numerical predictors over time. These effects are potentially non-

linear in both the predictor dimension (at a given point in time) and the time dimension (for a given predictor 

value). To allow for non-linearities in multiple dimensions, we used Generalized Additive Models (GAMs) to 

analyze our data (Hastie & Tibshirani (1986); Wood (2006), R package MGCV (version 1.6-2)). GAMs have 

recently been used in a number of ERP studies on language processing (Baayen et al., 2013b; Kryuchkova et al., 

2011). 

GAMs are regression models of the form  

 

𝑦	 = 	𝑋𝛽	 + 	𝑓(𝑥:, 𝑥6, … ) 	+ 	…	+ 	𝜀	 (2) 
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where y is the response variable, X β is a linear predictor and fi are smooth functions of the covariates xk. The 

parametric part of this equation (X β) is identical to that in standard regression models. The non-parametric part 

(f (x1, x2, …) + … ) consists of a number of smooth functions fi and is unique to GAMs. This part of the model 

allows GAMs to model non-linearities in multiple dimensions. 

 

Reaction time analysis 

 We fitted a GAM with by-participant smooth functions for trial, a random intercept for item and a 

smooth function for the previous reaction time to the naming latencies. Naming latencies further than 2.5 

standard deviations from the mean were removed from the data. A square root transformation was applied to the 

naming latencies to remove a rightward skew from the data. 

 We modeled the predictor effects for Word Frequency, Phrase Frequency and Relative Entropy using 

smooth functions. We modeled the effect of Word Length with a parametric term, because of the limited number 

of unique values for Word Length. The reported effect for Word Length, however, is identical when modeled with 

a smooth function. 

 

ERP analysis 

 We fitted a two stratum hierarchical GAM to the ERP data. In the first stratum we removed participant- 

and item-related variability, as well as task effects and the grand average over time from the data. In the second 

stratum we looked at the predictive power of our linguistic covariates using tensor products smooths for time by 

predictor. Alternatively, we could have opted for a single stratum modeling strategy, in which participant- and 

item-related variance, task effects, the grand average over time and predictor effects are entered into the model 

simultaneously. The results of such a holistic modeling strategy for the key effects reported below are presented 

in Appendix B. 

 

Stratum one 

 We used a restricted cubic spline for the main trend over Time and the effect of Trial Count, which 

gauges effects of fatigue or habituation. The effect of Participant was modeled with participant-specific 
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quadratic polynomials. To model item-related variance, we included quadratic polynomials for both 

prepositional phrase (e.g., “with the”) and noun (e.g., “saw”). 

 Due to the computational demands of GAMs and the size of our data set, we decided to analyze the ERP 

signal in four epochs: 0 to 300 ms, 200 to 500 ms, 400 to 700 ms and 600 to 900 ms after picture onset. We use a 

100 ms overlap between epochs to verify consistency of results for subsequent epochs. We refer the interested 

reader to Appendix B for an analysis of the key predictor effects reported below using larger time windows and a 

more detailed discussion of why a 100ms overlap between subsequent epochs is necessary. 

 Figure 1 shows the main trend over time at electrode Cz as predicted by our main trends GAM (solid 

black lines). Predicted main trend values correlate highly with average observed voltages (red dots), r = 0.87. 

This indicates that our main trends model successfully captures the general trend of the ERPs over time. Main 

trend model fits correlated highly with averaged observed voltages across all electrodes, with an average 

correlation of r = 0.97 between predicted main trend values and average observed values. 

 

[INSERT FIGURE 1 AROUND HERE] 

 

 The average reaction time in the experiment was 823 ms (median: 794 ms). The earliest responses 

started coming in much earlier than that, with a minimum reaction time of 238 ms. As a consequence, 

electromyographic (EMG) potentials arising from the facial, jaw and tongue muscles are present in a substantial 

subset of our data. These EMG potentials could therefore impoverish the signal-to-noise ratio (SNR) for this 

subset of the data. 

 There are two options for dealing with EMG activity in our data. First, we could remove all data points 

after the onset of articulation. There are a number of problems with this approach. As noted by Hillyard & Picton 

(1987) muscle artifacts may well be present long before speech onset. Even if we were to remove all data points 

following the onset of articulation, EMG artifacts would therefore remain in the data. In addition, the number of 

data points would substantially differ between epochs. The left panel of Figure 2 illustrates this problem. From 0 

to 400 ms very few data points are potentially affected by articulation artifacts: at 400 ms after stimulus onset, 

articulation has started for only 1.8% of all trials. In the third and fourth epoch, however, articulation has begun 
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for a significant portion of data points: 5.2% at 500 ms, 11.3% at 600 ms, 25.0% at 700 ms and 42.1% at 800 ms. 

At 900 ms after stimulus onset, articulation has already started for 57.1% of trials. Removing all these data 

points would lead to a drastic reduction of statistical power in the third and fourth epoch. 

 The second option for dealing with EMG activity is to include all data points, even those for which 

articulation artifacts might be present. While this approach ensures an equal amount of data for each point in 

time, it does not necessarily solve the problem of reduced statistical power in the later epochs. If EMG artifacts 

have a negative effect on the SNR in the last two epochs it becomes harder for statistical models to identify 

predictor effects in these epochs. To gauge the severity of this problem, we calculated the root mean square 

(RMS) for all electrodes. The right panel of Figure 2 shows the average RMS across all electrodes as a function 

of time. In the pre-stimulus interval (-100 to 0 ms), the average RMS across all electrodes and time points is 

6.47, whereas in the post-stimulus interval (0 to 900 ms) it is 7.94. As predicted, the RMS does increase as a 

function of time. Fortunately, however, the increase is limited: the average RMS is 7.67 in the 0-300 ms interval, 

8.10 in the 300-600 ms interval and 8.05 in the 600-900 ms interval. 

 To further inspect the potential problem of a decreased SNR due to articulation artifacts we looked at the 

RMS across electrodes in the last epoch (600 to 900 ms). If articulation introduces noise in the signal, we would 

expect this noise to be most prominent at frontal electrodes, which are closest to the facial and tongue muscles. 

RMS averages in the last epoch were indeed somewhat elevated at frontal locations. While the average RMS 

across all electrodes in the last epoch was 8.05, the average RMS values in the last epoch at frontal electrodes 

were 9.39 (Fp1), 9.27 (Fp2), 9.19 (AF3), 8.61 (AF4), 8.92 (F7), 8.81 (F3), 7.22 (Fz), 7.75 (F4), 8.80 (F8). Even 

though the average RMS values at frontal electrodes in the last epoch are somewhat elevated, these values 

suggest that the amount of noise introduced by EMG activity is fairly limited. 

 Despite the limited increase in RMS values over time, articulation artifacts could nonetheless be 

problematic if they vary systematically with our predictors of interest. To rule out this possibility, we compared 

the results of an analysis on the full data set to the results of an analysis on a subset of the data that only included 

data points before articulation onset. Most of the predictor effects that were significant in the full data set 

remained significant for the subset of the data. Furthermore, these predictor effects were qualitatively highly 

similar for the full data set and the pre-articulation subset of the data. We therefore decided to carry out our 
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analysis on the full data set, including data points after articulation onset. Whenever an effect was not significant 

in the pre-articulation subset of the data we explicitly mention this when discussing this effect. 

 

Stratum two: predictor tensor products 

 We fitted GAMs with tensor product smooths for time by predictor on the residuals of the stratum one 

models. We observed similar, but less conservative results when fitting the predictor GAMs to the original ERP 

signal. For computational efficiency, we fitted a separate model for each of our predictors. Similar results were 

obtained when using a hierarchical approach, in which each predictor GAM was fitted on the residuals of the 

previous predictor GAM and when using a multiple regression approach in which all predictor smooths were 

entered simultaneously. We used tensor product smooths with restricted cubic spline basis functions. To address 

the problem of multiple comparisons (32 electrodes, 4 epochs), we adopted a Bonferroni-corrected significance 

level of 0.0004 for all predictor GAMs. 

 The use of regression models has become commonplace in experimental studies investigating predictor 

effects on unidimensional dependent variables, such as reaction time studies. The application of regression type 

models in ERP studies, however, is much less widespread. To allow for a better understanding of the analysis 

technique used here and the advantages GAMs offer in comparison to a traditional ERP analysis we compare the 

current GAM analysis to a traditional ERP analysis for simulated data, as well as for some of the key predictor 

effects described below in Appendix A. 

 

 

Results 

 

Reaction time results 

 The naming latencies showed a marginally significant effect of Word Length (F = 3.367, p = 0.067). This 

marginally significant effect of Word Length was linear in nature, with longer naming latencies for longer words. 

The effect of Word Length is depicted in Figure 3. For ease of interpretation, normal linear naming latencies are 

plotted rather than the square root transformed latencies used for modeling. No significant effects were observed 
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for Word Frequency, Phrase Frequency and Relative Entropy. 

 

ERP results 

 In this section, we will discuss the results for the predictors Preposition Frequency, Word Frequency, 

Phrase Frequency and Relative Entropy. For each predictor, we visualize the observed effect over time at a 

representative example electrode. 

 

Word Length 

 Figure 4 shows the contour plot of the tensor surface for Word Length. The x-axis represents time (in 

ms), with the four panels showing the development of the effect over the four epochs (0 to 300 ms, 200 to 500 

ms, 400 to 700 ms and 600 to 900 ms) at a representative example electrode. Word Length is on the y-axis. The 

contour plot represents voltages at the depicted electrode, with warmer colors representing higher voltages. 

Contour lines are shown at intervals of 0.2 µV. Above each panel, the p value for the effect at the depicted 

electrode is given. As recommended by Wood (Wood, 2006) we used Bayesian p-values rather than the standard 

frequentist p-values, as Bayesian p-values have improved frequentist performance over the strictly frequentist 

approximation. Significant p-values at the Bonferroni-corrected alpha level are displayed in red. 

 

[INSERT FIGURE 4 AROUND HERE] 

 

 The first panel of Figure 4 shows an effect of Word Length. For long words, voltages are negative, then 

positive, then negative again and then positive again. In other words, we see oscillations for long words. To 

determine the frequency of these oscillations, we converted the time domain representation of the ERP signal 

seen in the first panel of Figure 4 to the frequency domain. Maximum spectral intensity for the oscillations is 

reached at 7 Hz. These oscillations are therefore theta range oscillations (3-7 Hz). 

Previously, theta range activity has been observed in a number of language processing studies and has 

been demonstrated to be related to, for instance, lexical-semantic retrieval (Bastiaansen et al., 2005, Bastiaansen 

et al., 2008), syntactic processing (Bastiaansen et al., 2002) and translation (Grabner et al., 2007). In a regression 
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study using GAMs, Kryuchkova et al. (2012) recently reported theta range oscillations in auditory 

comprehension tied to word frequency, phonological neighborhood density and morphological family size. Theta 

range oscillations are thought to reflect (working) memory demands in language processing that arise from the 

synchronous firing of neurons in hippocampal areas (see Bastiaansen and Hagoort (2003) for a comprehensive 

discussion of theta range oscillations). 

Each panel of Figure 4 contains a picture inset. Picture insets show the topography of the effect in each 

epoch, with bright red indicating significance at the Bonferroni-corrected alpha level (p < 0.0004) and dark red 

indicating significance at the non-corrected alpha level (p < 0.05). As can be seen in the inset in the left panel of 

Figure 4, the early oscillatory effect of Word Length is topographically widespread, with peak amplitudes at 

central-parietal electrodes in the left hemisphere. 

 The oscillatory effect of Word Length continues into the second epoch, where, again, we observed 

oscillations for long words. These oscillations now have a somewhat reduced frequency (5 Hz) and are 

topographically less widespread, with peak amplitudes in left-lateralized parietal-occipital regions. In the third 

epoch the oscillations for long words fade out, with low amplitude oscillations at the start of the third epoch in 

left-central areas only. In the fourth epoch, no topographically consistent effect of Word Length was observed at 

the Bonferroni-corrected alpha level. 

 To gauge the temporal development of the oscillatory effect for Word Length, we calculated three sigma 

(99.7%) confidence intervals around the contour surfaces. The first point in time at which 0 is not within this 

three sigma confidence interval is 131 ms after picture onset.2 The early onset of the Word Length effect is in 

line with previous work by Hauk et al. (2006), who found an effect of word length in visual word recognition 

starting at 90 to 100 ms after stimulus onset. The last point in time at which the effect of Word Length is 

statistically significant is 446 ms after picture onset. 

 

Word Frequency 

 Figure 5 shows the effect of Word Frequency. As for Word Length, oscillations tied to Word Frequency 

arise in the first epoch, for high frequency and - to a lesser extent - for low frequency words. These theta range 

oscillations have maximum spectral intensity at 5 Hz. The effect of Word Frequency in the first epoch is 
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topographically widespread, but the oscillations reach peak amplitudes in left-frontal areas. As for Word Length, 

the effect of Word Frequency arises early: it is first significant at 96 ms post stimulus onset. The early onset of 

the frequency effect is in line with previous findings  (Hauk et al., 2006; Sereno et al., 1998), reporting effects of 

lexical frequency in visual word recognition starting at 110 and 132 ms.  

 The early oscillatory activity for Word Frequency fades out in the second epoch. Oscillations for high 

frequency words are still present, but decrease in amplitude throughout the second epoch. They are last 

significant at 379 ms after picture onset. Topographically, the effect remains widespread and still peaks at left-

frontal electrodes. 

 

[INSERT FIGURE 5 AROUND HERE] 

 

 While we primarily see an effect for high frequency words in the first two epochs, an effect for low 

frequency words emerges in the last two epochs. This late re-emergence of the Word Frequency effect is present 

in the full data set that includes data points post articulation onset, but not in the subset of the data that includes 

data points before the onset of articulation only. Subtle oscillations at the bottom of the theta range (peak spectral 

intensity: 4 Hz) arise in the third epoch at left-lateralized frontal, central and parietal electrodes and first reach 

significance at 584 ms after picture onset. In the fourth epoch, these oscillations become more pronounced: the 

amplitude increases and the topographical distribution becomes wider. The effect remains significant until the 

end of the fourth epoch, 900 ms after picture onset. 

 The earlier onset of the oscillations for high frequency words as compared to low frequency words fits 

well with the classic frequency effect in reaction time studies on speech production: high frequency words are 

produced faster than their low frequency counterparts (Oldfield & Wingfield, 1965; Bates et al., 2003; 

Jescheniak & Levelt, 1994). Recently, a very similar effect of word frequency has been observed in an auditory 

comprehension ERP study. Consistent with the current findings, Kryuchkova et al. (2012) reported early theta 

range oscillation for both high and low frequency words, with maximum amplitudes for high frequency words, 

as well as late oscillations that were exclusive to low frequency words. 

 In a post-hoc analysis we residualized Word Frequency from Phrase Frequency to completely decouple 



 21 

Word Frequency and Phrase Frequency. As for raw Word Frequency we observed theta range oscillations for 

both high and low frequency words in the first and second epoch. These oscillations had similar phases to the 

oscillations reported above. In addition to these theta range oscillations we observed later prolonged negativities 

for high frequency words and prolonged positivities for low frequency words. When the 2.00% most extreme 

predictor values at both ends of the residualized Word Frequency distribution were removed the data, however, 

this positivity and negativity were no longer present in the data. Instead, we found 4 Hz oscillations in the fourth 

epoch that are most pronounced for low frequency words (but also present for medium and high frequency 

words near the end of the fourth epoch) and that are similar in phase to the late 4 Hz oscillations reported for 

Word Frequency below. This deviation from the results reported above therefore seems to be an outlier effect 

with limited statistical robustness. As such, we conclude that the results for residualized Word Frequency are 

similar to those reported for raw Word Frequency above. 

 

Phrase Frequency 

 Figure 6 shows the effect of Phrase Frequency. In contrast to the effects of Word Length and Word 

Frequency, the effect of Phrase Frequency is not oscillatory in nature. Instead, we see persistent negativities for 

both high and low frequency phrases at left frontal, central and parietal electrodes. 3 These negativities arise in 

the first epoch and are first significant at 70 ms after stimulus onset for high frequency phrases. For low 

frequency phrases, the onset of the effect is at 172 ms after stimulus onset. The negativities for both low and 

high frequency words continue in the second epoch, with a widespread topographical distribution and peaking at 

left frontal, central and parietal electrodes. In addition, we observed a more transient positivity for medium to 

high frequency words that arises in the second half of the second epoch. This positivity continues until halfway 

through the third epoch. 

 

[INSERT FIGURE 6 AROUND HERE] 

 

 In the third epoch, negativities for both high and low frequency words that peak at left frontal, central 

and parietal electrodes remain. While the negativities for low frequency words continue throughout the epoch, 
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the negativities for high frequency words are significant only until 591 ms after picture onset. Persistent 

negativities for low frequency phrases remain throughout the fourth epoch, but only reach significance until 768 

ms after stimulus onset. In addition, positivities arise for medium to low frequency words. As for the earlier 

effects of Phrase Frequency, this late effect is widespread, but most prominent at left-lateralized frontal and 

central electrodes. 

The effect for high frequency phrases starts and ends earlier than that for low frequency phrases. This 

finding is in line with the temporal development of the Word Frequency effect, which showed earlier oscillations 

for high frequency words than for low frequency words. As for the effect of word frequency, the effect of Phrase 

Frequency therefore fits well with reaction time studies that found faster responses to high frequency phrases 

than to low frequency phrases (Arnon & Snider, 2010, Bannard & Matthews, 2008; Shaoul et al., 2009, 

Tremblay et al., 2009; Tremblay & Baayen, 2010; Siyanova-Chanturia et al., 2011). 

The effect of Phrase Frequency is primarily characterized by prolonged effects that continue over 

substantial periods of time. In addition to the effects of Phrase Frequency reported above we found some 

evidence for oscillatory activity tied to Phrase Frequency, with theta range oscillations for both high and low 

frequency words that were most prominent at left-central frontal to parietal electrodes in the 0-300 ms time 

window and later theta range oscillations at right frontal electrodes in the third epoch, at right-lateralized central-

parietal electrodes in the fourth epoch and at left-lateralized and central central-to-occipital electrodes in the 

third and fourth epoch. It is therefore possible that the prolonged effects of Phrase Frequency reported above 

exist in addition to theta range oscillations for Phrase Frequency. 

The statistical robustness of the oscillatory activity tied to Phrase Frequency, however, is questionable. 

Even for the overlapping segment of 200-300 ms, the analysis for the 200-500 ms time window does not provide 

any evidence for the early theta range oscillations in the 0-300 ms time window. Similarly, the oscillations at 

right frontal electrodes in the third epoch are not supported for the overlapping segments in the second and in the 

fourth epoch. In addition, the oscillations at left-lateralized and central central-to-occipital in the third and fourth 

epoch are attenuated or replaced by prolonged negativities or positivities when looking at the pre-articulation 

subset of the data only. While it is possible that oscillatory effects of Phrase Frequency exist in addition to the 

prolonged effects of Phrase Frequency reported above, the evidence for such oscillations is therefore too limited 
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to consider these effects statistically robust. As such, we decided not to discuss these oscillations in more detail 

here.  

To allow for a complete decoupling of the Word Frequency and Phrase Frequency effects we carried out 

a post-hoc analysis using raw Phrase Frequency as a predictor, rather than the Phrase Frequency measure 

residualized on Word Frequency that we used in the analyses reported above. Overall, we found a similar pattern 

of results for raw Phrase Frequency and residualized Phrase Frequency. Although the temporal onset of these 

effects was somewhat delayed as compared to the effect of Phrase Frequency reported above (see also the 

simulated effect of Phrase Frequency in the NDR model reported below), we found persistent negativities for 

both high and low values of raw Phrase Frequency. As for residualized Phrase Frequency, the negativity for 

high values of raw Phrase Frequency faded around 600 ms after picture onset, whereas the negativity for low 

values of Phrase Frequency continued into and throughout the fourth epoch. Furthermore, we again observed 

more transient positivities for medium-to-high values of raw Phrase Frequency at the end of the second epoch 

and the start of the third epoch, as well as for low-to-medium values of raw Phrase Frequency at the end of the 

third and in the middle of the fourth epoch. 

As for the post-hoc analysis for Word Frequency, we found some deviations from the results reported 

above for the most extreme values of raw Phrase Frequency. First, we saw a transient positivity for high values 

of Phrase Frequency in the fourth epoch (600-875 ms) that was not present for residualized Word Frequency. 

Second, below the negativity for low values of Phrase Frequency, we saw a positivity for extremely low values 

of Phrase Frequency throughout all 4 epochs, that started at 0 ms after picture onset and continued until 900ms 

after picture onset. Potentially, these effects may be related to properties of Word Frequency that are present in 

the raw, but not in the residualized Phrase Frequency measure. Given that we found no corresponding effects for 

Word Frequency, however, it is unclear how likely such an interpretation of this late transient positivity for raw 

Phrase Frequency is. Also, the onset of the persistent positivity for the lowest values of Phrase Frequency at 0 

ms post picture onset poses some questions regarding the robustness of this effect. Independent of the status of 

these additional effects observed for raw Phrase Frequency, however, it is clear that the effect of residualized 

Phrase Frequency reported above reflects lexical properties that are present in the raw Phrase Frequency 

measure as well. Given the results of the post-hoc analyses for raw Word Frequency and raw Phrase Frequency 
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we conclude that the results reported here reflect true qualitative differences between the effects of Word 

Frequency and Phrase Frequency. 

The temporal onset of the effects of both Word Frequency and Phrase Frequency is similar, with early 

effects for both predictors. In addition, the effects for both predictors peak in left-frontal and left-central areas 

throughout all four epochs. Nonetheless, the qualitative nature of the Word Frequency and Phrase Frequency 

effects is different, with theta range oscillations characterizing the effect of Word Frequency and persistent 

negativities being the most prominent feature of the Phrase Frequency effect. The qualitative differences 

between the effects for Word Frequency and Phrase Frequency are reflected in the absence of a correlation 

between the contour surfaces for Word Frequency and Phrase Frequency (r < 0.01, p = 0.897). We will return to 

the dissociation between the effects of Word Frequency and Phrase Frequency shortly. 

 

Relative Entropy 

 Figure 7 presents the effect of Relative Entropy. In the first epoch, we observed 7 Hz oscillations 

throughout the predictor range at parietal-occipital electrodes. This effect first reaches significance at 111 ms 

after picture onset. In the second, epoch, 7 Hz theta oscillations continue throughout the predictor range at 

parietal and occipital electrodes across both hemispheres. The oscillations are last significant at 381 ms after 

stimulus onset. 

 

[INSERT FIGURE 7 AROUND HERE] 

 

 In the third and fourth epoch the effect of Relative Entropy re-emerges, with low-frequency 4 Hz 

oscillations for high predictor values that first reach significance at 564 ms and that are last significant until 831 

ms after stimulus onset. The effect in the third epoch is present for both the full set of the data and the subset of 

the data that includes data points before the onset of articulation only. The effect of Relative Entropy in the 

fourth epoch, however, is absent for the pre-articulation subset of the data. In contrast to the early effect of 

Relative Entropy, this later effect peaks at left-lateralized central and frontal electrodes. While we also see more 

subtle oscillations for words with low Relative Entropy in the bottom left of the fourth panel of Figure 5, these 
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oscillations do not reach significance. 

 Reaction time studies reported increased response latencies for words with high relative 

entropies (Milin et al., 2009a; Milin et al., 2009b; Kuperman et al., 2010; Baayen et al., 2011). The current 

pattern of results fits well with these findings. The early 7 Hz oscillations reach maximum amplitude for high 

values of Relative Entropy and the late 4 Hz oscillations are exclusive to words with high Relative Entropy. The 

current results therefore indicate that additional processing is required for nouns with atypical prepositional 

phrase frequency distributions as compared to nouns that use prepositions in a more typical way. 

 The effects of Relative Entropy and Word Frequency show remarkable similarities. While the 

topographies of the early effects are different, both predictors give rise to 7 Hz oscillations for both high and low 

predictor values that arise around 100 ms after picture onset. For both predictors, these oscillations fade out 

around 400 ms after stimulus onset. In addition, we see a late effect of both Relative Entropy and Word 

Frequency for those predictor values that have been demonstrated to lead to increased reaction times in 

chronometric studies: both low values of Word Frequency and high values of Relative Entropy give rise to late 4 

Hz oscillations in left-lateralized frontal areas. 

 The similarity of the effect of Relative Entropy and Word Frequency is complimented by the nature of 

the Word Length effect. While there was no late manifestation of Word Length in the ERP signal, the effect of 

this third lexical predictor was characterized by left-lateralized 7 Hz oscillations that arise around 100 ms after 

picture onset and fade out around 400 ms. The effect of Word Length is therefore similar to the early effects of 

Word Frequency and Relative Entropy. The qualitative, temporal and topographical overlap between the effects 

of the three word level predictors is food for thought. Given the relevance of the simulation study that follows 

for the implications of these similarities, we will return to this issue in the General Discussion section of this 

paper. 

 

Controls 

 In addition to the effects reported above, we observed theta range (7 Hz) oscillations related to picture 

complexity (Jpg size in bytes) throughout all epochs and for all predictor values. These oscillations peaked in 

left-central parietal-occipital areas and had higher amplitudes for more complicated pictures than for less 
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complicated pictures. Furthermore, we observed effects of both preposition length and preposition frequency. 

For preposition length we observed early 7 Hz oscillations for long prepositions at left-frontal electrodes, as well 

as late 5 Hz oscillations at left-frontal and left-parietal electrodes. For preposition frequency, we observed 7 Hz 

oscillations for low frequency prepositions throughout the second, third and fourth epoch. These oscillations 

peaked at left-lateralized parietal locations, but were also present in central and occipital areas. Controlling for 

the effects of picture complexity, preposition length and preposition frequency did not significantly affect the 

results reported for the predictors of interest above. 

 

 

 

Discussion 

 

 In the current experiment, we observed effects of both word-level and phrase-level predictors in a 

primed picture naming paradigm. At the word level, theta range oscillations characterized the ERP signatures of 

Word Length, Word Frequency and Relative Entropy. All three word level effects arose early: they were first 

significant at 110 ms, 96 ms and 108 ms after picture onset. In addition, while some differences in topographies 

were observed, all word level effects were significant across a wide range of electrodes in the left hemisphere. 

The ERP signature of Phrase Frequency was qualitatively different and characterized by persistent negativities 

for both extreme predictor values and more transient positivities for phrases with intermediate frequencies. The 

timing and topography of the Phrase Frequency effect, however, were more similar to the timing and topography 

of the word level effects: the effect for Phrase Frequency arose early and was most prominent in the left 

hemisphere. How should we interpret this pattern of results? 

 In exemplar-based approaches such as data-oriented parsing (Bod, 2006) or memory-based learning 

(Daelemans & Bosch, 2005) phrase frequency effects are explained through the existence of phrase 

representations. The frequency count associated with a phrase representation determines how quickly that phrase 

representation can be accessed, just like the frequency count associated with a word representation determines 

how quickly that word can be accessed. While exemplar-based models correctly predict that there should be 
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temporal and spatial overlap between the effects of word frequency and phrase frequency, it is unclear how such 

models would account for the qualitatively different pattern of results observed for Word Frequency and Phrase 

Frequency in the current experiment. 

 Perhaps the apparent incompatibility of exemplar-based models with the current findings results from 

the fact that exemplar-based models are implemented at a certain level of abstraction. Exemplar-based models 

represent words and phrases as discrete units or sets of finer-grained discrete feature-value pairs. This 

discretization is an obvious oversimplification of the neuro-biological processes that the ERP signal taps into. In 

these processes word or phrase representations are more likely to consist of firing patterns of assemblies of 

neurons. Given our limited understanding of the neuro-biological reality of language processing it is possible 

that conceptually similar representations for words and phrases correspond to qualitatively different neural firing 

patterns with qualitatively different manifestations in the ERP signal. 

Nonetheless, it is clear that at this point in time exemplar-based models do not straightforwardly account 

for the differences between the observed word and phrase frequency effects. Furthermore, accounting for relative 

entropy effects in exemplar-based models would involve the conceptually and computationally unappealing 

assumption that online computation over stored frequency distributions for both exemplars and prototypes takes 

place. The current pattern of results therefore poses a challenge to exemplar-based models. 

Discrimination learning provides an alternative account for the effects of word frequency, phrase 

frequency and relative entropy. Baayen et al. (2011) successfully replicated chronometric effects of prepositional 

relative entropy and phrase frequency in the Naive Discriminative Reader (NDR) model. In what follows, we 

will explore to what extent the NDR model is able to capture the complex ERP signatures for Word Length, Word 

Frequency, Phrase Frequency and Relative Entropy observed here. First, we will introduce the NDR model in 

more detail. Next, we will describe a simulation study in which we sought to replicate the current  experimental 

results in the NDR model. Finally, we will present the results of this simulation for each of our four predictors of 

interest. 
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Naive Discriminative Reader 

 

 The Naive Discriminative Reader (Baayen et al., 2011) is a model of language processing that learns 

associations between letters and letters combinations on the one hand and basic word meanings on the other 

hand. The associations are learned through the Rescorla-Wagner equations (Wagner & Rescorla, 1972), which 

are mathematically equivalent to the delta rule (Sutton & Barto, 1981). Given the association strength 𝑉1GH: 

between outcome O and cue Ci at time t, the Rescorla-Wagner equations provide the association strength at time 

t + 1: 

 

𝑉1GH: = 	𝑉1G + 	∆	𝑉1G (3) 

 

where the change in association strength,  ∆	𝑉1G, is defined as: 

 

∆𝑉1G =

	0 if	ABSENT(𝐶1, 𝑡)

	𝛼1𝛽:(𝜆 − 	 𝑉V
WXYZY[\(]^,G)

) if	PRESENT 𝐶V, 𝑡 	&	PRESENT(𝑂, 𝑡)

	𝛼1𝛽6(0 − 	 𝑉V
WXYZY[\(]^,G)

) if	PRESENT 𝐶V, 𝑡 	&	ABSENT(𝑂, 𝑡)

	 

 

(4) 

 

The NDR uses the default settings for all parameters: λ = 1, all α’s equal, and β1 = β2. As can be seen in Equation 

4, the association between a cue and an outcome increases if the outcome occurs when the cue is present and 

decreases if the outcome does not occur when the cue is present. 

 The Rescorla-Wagner equations have a temporal dimension: they describe the development of the 

association strengths over time. The NDR model uses the Danks equations (Danks, 2003) as a mathematical 

shortcut to the association strength for the equilibrium state of the model – i.e.; the state of the model in which 

the association strengths do not change from time t to time t + 1. These equilibrium equations define the 

association strength (Vik) between cue (Ci) and outcome (Ok) as: 

 



 29 

Pr 𝑂b|𝐶1 − 	 Pr	(
8

V9d

𝐶V 𝐶1 𝑉Vb 	= 	0  (5) 

 

with Pr(Cj|Ci) the conditional probability of cue Cj given cue Ci, Pr(Ok|Ci) the conditional probability of outcome 

Ok given cue Ci and n + 1 the number of unique cues. As shown in equation 5, the association strengths are 

calculated independently for each outcome. This is simplification is similar to that in Naive Bayesian Classifiers 

and inspired Baayen et al. (2011) to refer to their model as an instantiation of naive discrimination learning. 

 When a specific word or phrase is presented as an input, only the subset of letter combination cues present 

in that word or phrase will become active. The extent to which these cues activate the target meaning outcome 

(in case a single word is presented) or outcomes (in case multiple words are presented) is a measure of how hard 

it is to access the meaning of a word or phrase. The activation of the set of target meanings O given the set of 

active input cues C is defined in the NDR as: 

 

𝑎1	 	= 𝑉Vb
V∈]b∈g

  (6) 

 

where j ranges over the active cues, k ranges over the active outcomes and Vjk is the equilibrium association 

strength for cue Cj and outcome Ok. 

 

 

NDR Simulation 

 

 The NDR model is a model of reading: the input cues are orthographic in nature, while the outcomes are 

word meanings. The task in the current experiment, however, involves much more than simple reading. The 

orthographic presentation of the preposition and definite article is line with the nature of the NDR model. The 

target noun, however, is depicted in a photograph. Ideally, therefore, a simulation of the current data would 

involve an additional discrimination network mapping visual features of the photograph onto the word meaning 
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of the target noun. While we are exploring how to implement a visual discriminative learning network in 

ongoing research, no such network is implemented in the current version of the NDR model. We therefore 

decided to use orthographic input cues not only for the preposition and the definite article, but also for the target 

noun. While orthographic cues are an obvious oversimplification of the rich visual input provided by the 

photographs, the simulation results reported below indicate that the orthography to meaning mappings are a 

satisfactory proxy for the mappings from visual features to meanings. 

 A second discrepancy between the experimental setup and the current implementation of the NDR model 

concerns the nature of the task. While the NDR model is a reading model, the task in the current experiment 

involves naming the target noun. Recently, Hendrix et al. (2013) implemented the NDRa model, an extension of 

the NDR model for reading aloud. The NDRa consists of two networks: a network mapping orthographic cues 

onto meanings outcomes and a network mapping meanings onto acoustic features (diphones). The NDRa 

replicates the successful simulation of a large number of predictor effects in the NDR model – including the 

effects of word frequency, word length and relative entropy3. In addition it captures a number of findings that are 

specific to the reading aloud literature, such as effects of the consistency of orthography to phonology mappings 

and a pseudohomophone advantage for nonwords. 

 Nonetheless, we decided to use the original NDR reading model for the current simulation. A first reason 

for using the original NDR model is that the current task is a somewhat of a hybrid between production and 

comprehension. At the word level, the task very much resembles a naming aloud task, albeit with visual rather 

than orthographic input. At the phrase level, however, no overt responses are required. The effect of Phrase 

Frequency is an effect of implicit phrase-level comprehension, not of phrase-level production. While ideal for 

word-level simulations, therefore, the architecture of the NDRa is less than optimal for phrase-level simulations.  

 Second, despite the fact that the orthography to phonology mapping in English is inconsistent at times, 

there is considerable isomorphism between the orthographic and the phonological representations of words. As a 

result, there is a fair amount of overlap between the information learned by a discriminative learning network 

from orthography to semantics and the information learned by a discriminative learning network from phonology 

to semantics. For the set of 2,416 monosyllabic words used by Hendrix et al. (2013), for instance, the activation 

of the target word meaning from the orthography is highly correlated with the activation of the target word 
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meaning from the phonology (r = 0.41, p < 0.001). 

 Third, the original NDR model captures the chronometric effects of the predictors of interest in this study. 

If the same holds for the ERP effects reported here, the most parsimonious account for the data is the original 

NDR model, which consists of one, rather than two discriminative learning networks. Before attempting a 

simulation in the more complex NDRa model, it is therefore worth seeing how well the original NDR model 

captures the current pattern of results. 

  In order to learn the associations between input cues and word meanings the NDR model needs to trained 

on a representative language sample. Following Baayen et al. (2011) we trained the NDR model on the British 

National Corpus (henceforth BNC; Burnard (1995)). The training data for the current simulation consisted of 

100 million word trigrams from the BNC, using letter trigrams as input cues and word meanings as outcomes. 

This training regime resulted in a set of 9238 unique orthographic input cues and a set of 71067 unique meaning 

outcomes. 

 In the current primed picture naming paradigm, participants are presented with a preposition plus definite 

article prime prior to seeing the target picture. Their task is to name the target picture as fast and accurately as 

possible given the presentation of the prime and target. For the simulation of the word level effects of Word 

Length, Word Frequency and Relative Entropy, we are therefore interested in the activation of the meaning of the 

target noun given the presentation of the preposition, the definite article and the noun. We obtained this 

simulated target noun activation by summing the associations between all letter trigrams in the input phrase and 

the target noun meaning (see Equation 6). For the example phrase “into the onion”, for instance, we summed the 

associations between the letter trigrams #in, int, nto, to#, o#t, #th, the, he#, e#o, #on, oni, nio, ion and on# (word 

boundaries are represented by hash marks in the NDR input encoding) and the meaning ONION. 

 For the simulation of the Phrase Frequency effect, the activation of the meaning of the full phrase is of 

interest. In the full-decomposition NDR model simulated phrase activations are defined as the summed 

activations of the meanings of the component words. For the example phrase “into the onion”, we therefore 

summed the association between the component letter trigrams (#in, int, nto, to#, o#t, #th, the, he#, e#o, #on, 

oni, nio, ion and on#) and the meaning INTO, between the letter trigrams and the meaning THE and between the 

letter trigrams and the meaning ONION. We then summed these activations to obtain the activation of the phrase 
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meaning INTO THE ONION. 

 We calculated simulated Word Activation values for all 68 target nouns and simulated Phrase Activation 

values for all 272 phrases used in the experiment. Following Baayen et al. (2011) we applied an inverse and 

logarithmic transformation to all activations to remove a rightward skew from the data. Consistent with previous 

NDR simulations, we added a back off constant of 0.10 to all activations to prevent division by zero when 

applying the inverse transformation. 

 Prior to the analysis of the experimental data, we decorrelated Phrase Frequency from Word Frequency 

and Preposition Frequency. To allow for a direct comparison of the effect for Phrase Activation to the effect for 

Phrase Frequency we applied the same decorrelation procedure to Phrase Activation (i.e.; we use the residuals 

of a linear model predicting Phrase Activation from Word Frequency (r = -0.09) and Preposition Frequency (r = 

-0.30)). The residualized Phrase Activation measure correlated 0.91 with the non-residualized, original Phrase 

Activation measure. Phrase Activation did not significantly correlate with Phrase Frequency, neither before (r = 

0.07, p = 0.264) nor after residualization (r = 0.07, p = 0.293). By contrast, Word Activation correlated 

significantly with the word level predictors Word Length (r = 0.29, p < 0.001), Word Frequency (r = -0.39, p < 

0.001) and Relative Entropy (r = 0.15, p = 0.025). 

 The rationale behind this simulation is to compare the effects of Word Activation and Phrase Activation to 

the observed effects for Word Length, Word Frequency, Phrase Frequency and Relative Entropy. Analogous to 

our analyses for the lexical predictors, we therefore fitted separate GAMs with tensor product smooths (with 

restricted cubic spline basis functions) for time by Word Activation and time by Phrase Activation on the 

residuals of the stratum one GAMs described in the Analysis section of this paper. No activations were removed 

prior to analysis. As before, we adopted a Bonferroni-corrected significance level of 0.0004 for all activation 

predictor GAMs. 

 

 

 

Simulation Results 
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 In this section, we will present the simulation results for the observed effects of Word Length, Word 

Frequency, Phrase Freqency and Relative Entropy at representative example electrodes. Simulation results for 

the word level predictors Word Length, Word Frequency and Relative Entropy are the outcome of the tensor 

product smooths for time by Word Activation, whereas the simulation results for Phrase Frequency are the 

outcome of the tensor product smooths for time by Phrase Activation. 

 

Word Length 

 Figure 8 shows the contour plot of the tensor surface for Word Activation. Selected example electrodes 

are electrodes at a maximum horizontal, vertical or diagonal distance of two electrodes from the example 

electrodes for the observed effect of Word Length in Figure 4. As before, the x-axis shows time in milliseconds 

after picture onset, with the four panels showing the development of the effect over the four epochs (0 to 300 ms, 

200 to 500 ms, 400 to 700 ms and 600 to 900 ms). Word Activation is on the y-axis. Following the description of 

the observed effects, the z-axis shows voltages, with warmer colors representing higher voltages. Above each 

panel, the Bayesian p value for the effect of Word Activation at the depicted electrode is given, with significant 

p-values at the Bonferroni-corrected alpha level displayed in red. 

 If the NDR model correctly captures the observed effects, the ERP signature effect of Word Activation 

should be a superposition of the ERP signatures for Word Length, Word Frequency and Relative Entropy. The 

effect of Word Activation should therefore be significant whenever the combination of the effects of Word 

Length, Word Frequency or Relative Entropy is significant. As a result, the topographical distribution of the Word 

Activation effect is not directly comparable to that of the individual lexical predictors. We therefore omitted the 

picture inset showing the topographical distribution of the Word Activation effect from Figure 6. 

 

[INSERT FIGURE 8 AROUND HERE] 

 

The first panel of Figure 8 shows an oscillatory effect for high values of Word Activation in the first 

epoch. This effect is most prominent in parietal-occipital areas. Given the inverse transform that we applied to 

the activations, Word Activation correlates positively with Word Length (r = 0.29, p < 0.001). The oscillations 
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for high values of Word Activation therefore correspond to the oscillations for high values of Word Length in 

Figure 2. With peak spectral intensity at 6 Hz, the frequency of the oscillations observed here is slightly lower 

than that of the observed 7 Hz oscillations for Word Length. 

 The effect of Word Activation is first significant at 93 ms after stimulus onset. This is 17 ms earlier than 

the observed effect of Word Length, which was first significant at 110 ms. This difference likely arises as a result 

of the fact that we are determining the temporal onset of oscillatory effects. The slightly reduced frequency of 

the oscillations for Word Activation as compared to Word Length in the first 150 ms after picture onset leads to a 

phase shift, with maximum positive amplitudes for Word Activation preceding maximum positive amplitudes for 

Word Length. As a result, the effect of Word Activation reaches significance a bit earlier than the effect of Word 

Length. 

 As for the observed effect of Word Length, the oscillations for high values of Word Activation continue in 

the second epoch in left-lateralized central-parietal areas. Whereas the observed effect of Word Length was 

significant until 446 ms after picture onset, the oscillations for Word Activation are last significant at 383 ms. 

Consistent with the results for Word Length, the effect of Word Activation is no longer significant at left-

lateralized frontal-central electrodes in the third epoch and at parietal-occipital electrodes in the fourth epoch. 

 Overall, the word level NDR activations successfully capture the observed effect of Word Length. The 

contour plots in Figure 4 and Figure 8 show a similar qualitative pattern, with 5-7 Hz oscillations for high 

predictor values in the first and second epoch and no effects in the third and fourth epoch. To quantify the 

similarity of the observed and simulated effects of Word Length, we calculated the correlation between the tensor 

surfaces displayed in Figure 2 and Figure 6. At r = 0.29 this correlation was highly significant (p < 0.001). 

 

Word Frequency 

Figure 9 shows the simulation of the Word Frequency effect, as depicted at representative example 

electrodes for Word Activation. Given the inverse transform that we applied to the activations, Word Activation 

correlates negatively with Word Frequency (r = 0.39, p < 0.001). To simplify the comparison of the simulated 

effects with the observed effects, we therefore flipped the y-axis in Figure 9, which now has high values for 

Word Activation at the bottom and low values for Word Activation at the top. 
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[INSERT FIGURE 9 AROUND HERE] 

 

In the first epoch, oscillations arise for both high and low frequency words. These oscillations reach peak 

spectral intensity at 7 Hz. As such, these oscillations have a somewhat higher frequency than the 5 Hz 

oscillations in the first epoch for Word Frequency in Figure 5. In addition, the amplitude of the oscillations is 

greater for low frequency words than for high frequency words, while the observed effect showed maximum 

amplitudes for high frequency words. Furthermore, the effect reaches significance a bit later than the observed 

effect of Word Frequency: whereas the oscillatory effect of Word Activation is first significant at 107 ms after 

picture onset4, the observed effect of Word Frequency was first significant 11 ms earlier, at 96 ms after picture 

onset. Despite these differences, the overall ERP signature of the simulated effect in the first epoch is highly 

similar to that of the early observed effect of Word Frequency: theta range oscillations for both high and low 

frequency words at left-lateralized frontal-central electrodes, with identical phases for the observed and 

simulated oscillations. 

The oscillations for both high and low frequency words continue into the second epoch, where they 

remain more pronounced (i.e.; characterized by higher amplitudes) for low frequency words. At 7 Hz, the 

frequency of these oscillations now matches the frequency of the 7 Hz oscillations in the second epoch for the 

observed effect of Word Frequency. The effect fades out in the second half of the epoch and is last significant at 

383 ms after picture onset. As such, the temporal offset of the simulated Word Frequency effect closely 

resembles that of the observed Word Frequency effect, which was last significant at 379 ms. 

The observed effect of Word Frequency was characterized by a late re-emergence of oscillatory activity, 

with low-frequency oscillations for low frequency words at the end of the third and throughout the fourth epoch. 

This effect was only marginally significant in the third epoch, but highly significant in the fourth. Here, we see a 

similar pattern of results. While no effect is present in the third epoch, highly significant 4 Hz oscillations 

characterize the bottom half of the fourth panel of Figure 9. These oscillations have the same phase and 

frequency as the oscillations for low-frequency words in the fourth panel of Figure 5. The late oscillations for 

Word Activation are first significant at 604 ms after picture onset and remain significant throughout the fourth 
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epoch. As such, their time-course is comparable to the late observed effect of Word Frequency, which started at 

584 ms after picture onset and remained significant until 900 ms after picture onset. 

In summary, the NDR activations successfully capture the complicated pattern of results observed for 

Word Frequency. The model correctly simulates the early 5-7 Hz oscillations for high and low frequency words 

at left-lateralized frontal-central electrodes, as well as the late 4 Hz oscillations for low frequency words in the 

same areas. The phase of the simulated oscillations was highly similar to the phase of the observed oscillations 

for both the early and late effect of Word Frequency. The successful simulation of the Word Frequency effect is 

confirmed by a significant correlation (r = 0.208, p < 0.001) between the tensor surfaces for the observed effect 

of Word Frequency and the effect of Word Activation. 

 

Phrase Frequency 

 Figure 10 presents the effect of Phrase Frequency as simulated by the Phrase Activation measure from 

the NDR simulation. As for Word Frequency, we flipped the y-axis in Figure 10 to allow for an easy comparison 

of the simulated effect with the observed effect for Phrase Frequency in Figure 6. 

 

[INSERT FIGURE 10 AROUND HERE] 

 

In the first panel of Figure 10, we see a deviation from the observed effect of Phrase Frequency, which 

was characterized by early negativities for both high and low frequency phrases. For Phrase Activation, no such 

negativities are present. Instead, see a transient early negativity for low predictor values in the top left of panel 1 

of Figure 10. This effect arises earlier than any effect we have seen so far, either in the observed data or in the 

NDR simulation. In addition, the effect is topographically inconsistent: a similar transient early negativity is 

present only at one other electrode (P7). This suggests that the early negativity for low predictor values seen here 

may be a statistical fluke. We will therefore not discuss this effect in further detail. In addition to the early 

transient negativity for low predictor values, we also see a hint of an early negativity for high predictor values 

(bottom right of panel 1). This negativity, however, does not reach significance in the first epoch. 

 In the second epoch the simulation results look highly similar to the observed effect of Phrase 
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Frequency, with persistent left-lateralized negativities at frontal, central and parietal electrodes for both high and 

low predictor values. The negativity for low predictor values (top of panel 2 of Figure 10) reaches significance at 

267 ms after picture onset, whereas the negativity for high predictor values (bottom of panel 2) is first significant 

at 302 ms. The effect size of the negativity for high values of Phrase Activation is somewhat greater than the 

effect size for the observed effect of Phrase Frequency. Given that there is only one item for which Phrase 

Activation is greater than 0.30, however, the effect of Phrase Activation for high predictor values might be 

somewhat overrepresented in Figure 10. In addition, a more transient positivity for low to medium values of 

Phrase Activation emerges in the second half of the second epoch. This positivity is similar to the positivity 

observed for medium to high frequency phrases in the observed effect for Phrase Frequency. As for the observed 

effect, this transient positivity continues in the first part of the third epoch. 

Consistent with the observed effect of Phrase Frequency, the negativities for extreme predictor values 

continue in the third epoch at left frontal, central and parietal electrodes. For high values of Phrase Activation 

these negativities continue throughout the epoch (bottom half of panel 3 of Figure 10), but for low values of 

Phrase Activation they are last significant at 611 ms after picture onset. This closely resembles the pattern of 

results for the observed effect of Phrase Frequency, where negativities for low frequency phrases continued 

throughout the third epoch, but negativities for high frequency phrases were last significant at 591 ms after 

picture onset. 

The negativities for high values of Phrase Frequency at left frontal, central and parietal electrodes 

remain significant throughout the fourth epoch. As such, the simulated effect for low frequency phrases remains 

significant substantially longer than the observed effect, which was last significant at 768 ms. Furthermore, we 

see a continuation of the positivity for low to medium values of Phrase Activation. This positivity was not 

present in the fourth epoch for the observed effect of Phrase Frequency. The positivity for low to medium values 

of Phrase Frequency in the second half of the fourth epoch is reflected in the subtle positivities for medium to 

high values of Phrase Activation in the bottom half of the fourth panel of Figure 8. Although the effect size of 

these positivities is limited, this effect reaches significance from 600 to 828 ms. 

The observed effect of Phrase Frequency is quite complicated, with widespread left-lateralized 

persistent negativities for high and low frequency phrases and more transient positivities for intermediate values 
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of phrase frequency. Although the NDR model does not pick up the negativities for extreme predictor values in 

the first epoch, the overall nature of the Phrase Frequency effect is successfully captured by the NDR phrase 

activations. The successful replication of the Phrase Frequency effect in the NDR simulation is confirmed by a 

high correlation between the tensor surfaces for the observed and simulated effects (r = 0.539, p < 0.001). 

 

Relative Entropy 

 Figure 11 presents the simulation of the observed effect for Relative Entropy using the NDR word 

activations. Word Activation correlates positively with Relative Entropy (r = 0.15, p = 0.025). High values for 

Word Activation therefore correspond to high values for Relative Entropy and, as such, represent words with 

atypical prepositional phrase frequency distributions. 

 

[INSERT FIGURE 11 AROUND HERE] 

 

The first panel of Figure 11 shows 7 Hz oscillations for both high and low values of Word Activation. These 

oscillations are most prominent at central and right-lateralized parietal-occipital electrodes. The oscillations for 

high values of Word Activation are similar to those for high values of Relative Entropy, with a similar frequency 

and phase, but a somewhat increased amplitude. The temporal onset of both effects is similar as well, with the 

oscillations for high predictor values first being significant at 107 ms for Word Activation and at 108 ms for 

Relative Entropy. At the bottom end of the predictor range, we see oscillations for low and medium values of 

Word Activation that correspond in frequency and phase to the oscillations observed for medium values of 

Relative Entropy. The extra row of oscillations for words with low Relative Entropy, however, is not captured by 

the NDR activations. 

 In the second epoch the 7 Hz oscillations for high values of Word Activation continue at right-lateralized 

parietal-occipital electrodes. These correlations correspond temporally and topographically to the oscillations 

seen for high values of Relative Entropy. In addition, the NDR simulation captures the oscillations seen for 

words with both medium and low values of Relative Entropy. While the effect of Relative Entropy was last 

significant at 381 ms after picture onset, the significant effect of Word Activation lasts 38 ms longer: it is last 
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significant at 419 ms. 

 In the third and fourth epoch, the effect for high values of Word Activation re-emerges. This late effect of 

Word Activation corresponds to the late effect for words with high Relative Entropy. Like the observed effect of 

Relative Entropy, the late effect of Word Activation is characterized by low-frequency 4 Hz oscillations for high 

predictor values at left-lateralized central and frontal electrodes. While the onset of the observed Relative 

Entropy effect was 584 ms, the onset of the late effect in the NDR simulation is 608 ms. The offset of the 

observed effect of Relative Entropy is somewhat later than that of the simulated effect as well: 831 ms versus 

900 ms. 

 There is one striking difference between the late effect observed for Relative Entropy and the late effect 

for Word Activation. The observed effect is characterized by a single row of oscillations for all high values of 

Relative Entropy. The simulated effect, by contrast, shows two rows of oscillations. The oscillations for the 

highest values of Word Activation correspond in phase and frequency to those observed for Relative Entropy. The 

second row of oscillations has the same frequency, but is opposite in phase. This discrepancy between the 

observed and simulated effects is a result of the fact that the NDR model simultaneously captures the observed 

effects of Word Length, Word Frequency and Relative Entropy. As a result, simulation contour plots are a 

superposition of the simulated effects of Word Length, Word Frequency and Relative Entropy (as well as any 

other effects that might arise in the NDR model, but are not of interest in the current simulation). 

For all simulated effects reported so far, we were able to select example electrodes for which the 

simulation results (almost) exclusively correspond to the results of a single predictor. The late effects of Word 

Frequency and Relative Entropy, however, coincide both temporally and topographically. The fourth panel of 

Figure 11, therefore, is a superposition of the late 4 Hz oscillations for low values Word Frequency (the vertical 

mirror image of panel 4 of Figure 5) and high values of Relative Entropy (panel 4 of Figure 7). As such, the extra 

row of oscillations seen in panel 4 of Figure 11 is not an incorrect simulation of the Relative Entropy effect, but 

the correct simultaneous simulation of the late Relative Entropy and Word Frequency effects. In addition, the 

superposition of the phase-synchronized 4 Hz oscillations tied to low values of Word Frequency and high values 

of Relative Entropy effects explains the increased amplitude of the oscillations for the highest values of Word 

Activation. 
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Finally, more subtle oscillations for low values of Word Activation arise in the fourth epoch. These 

oscillations correspond to the subtle oscillations seen for low values of Relative Entropy, but reach peak 

amplitudes somewhat later in time. While the subtle oscillations for Relative Entropy failed to reach significance, 

the oscillations for low values of Word Activation observed here briefly reach significance in the last 7 ms of the 

fourth epoch. Given the limited reliability of GAMs near the edges of the analysis windows, however, it is 

unclear how robust this effect of Word Activation is. 

In summary, the NDR model successfully replicates the pattern of results for Relative Entropy, with 7 Hz 

oscillations across the predictor range at parietal-occipital locations in the first two epochs and a late re-

emergence of the effect for words with high Relative Entropy in the form of slower 4 Hz oscillations in left-

lateralized frontal-central areas. This is confirmed by a highly significant correlation of the tensor surfaces for 

the observed and simulated effects (r = 0.421, p < 0.001) 

 

 

Discussion 

 

The simulation results demonstrate that the predictive power of the discriminative learning approach as 

implemented in the NDR model extends beyond the realm of chronometric studies. The effects of Word Length, 

Word Frequency and Relative Entropy were characterized by theta range oscillations with different temporal 

dynamics, amplitudes and phases across the predictor dimension. By contrast, we observed persistent 

negativities for extreme values of Phrase Frequency. While all predictor effects were most prominent in the left 

hemisphere, each predictor effect showed a unique topographical development over time. The NDR model 

successfully captures the observed non-linear predictor effects and their temporal and spatial dynamics. 

Three aspects of these simulation results are of particular theoretical interest. First, the NDR model 

successfully replicates the qualitative differences between the effects for Word Frequency and Phrase Frequency. 

Previously, Baayen et al. (2013a) demonstrated that the NDR model correctly captures phrase frequency effects 

in chronometric studies. The current results extend the findings by Baayen et al. (2013a) by showing that the 

NDR model not only simulates the existence of a phrase frequency effect, but also correctly predicts how the 
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non-linear temporal and spatial dynamics of this effect differ from those for the effect of Word Frequency. 

Word Frequency effects in the NDR model are directly reflected in the word level activations, which are 

a measure of the bottom-up support for the meaning of the target noun given the prepositional phrase input. 

These same word level activations enter the phrase level activation measure, which leads to a strong correlation 

between Word Activation and Phrase Activation (r = 0.72, p < 0.001, before residualization of Phrase 

Activation: r = 0.65, p < 0.001). Crucially, however, it is the integration of the activations of the target noun with 

the activations of the preposition and the definite article that enables the NDR model to successfully replicate the 

qualitative differences between the Word Frequency and Phrase Frequency effects. 

In the current NDL simulation the activations of the preposition, definite article and noun equally 

contribute to the simulated phrase activations. While this approach allowed us to simulate the observed effects in 

a parameter-free model, it is possible that a weight parameter for the contribution of each word to the phrase 

activations would help further improve the performance of the model. Given the primed picture naming 

paradigm used in the current study, preposition and definite article activations may contribute to phrase 

activations to a different degree than target noun activations. In addition, the relative contribution of preposition 

and definite article activations and target noun activations may vary over time as a consequence of the 2000 ms 

time lag between the onset of the presentation of the prime and the onset of the presentation of the target. A time-

sensitive weight parameter might therefore provide the NDR model with an opportunity to capture the 

negativities for Phrase Frequency in the first epoch.  

The second aspect of this simulation that is of particular theoretical interest concerns the Relative 

Entropy measure. While Relative Entropy effects pose a challenge to exemplar-based models, they fit well with 

the architecture of the NDR model. The computational engine of the NDR is a discrimination learning algorithm 

that learns to associate orthographic input units with semantic outcomes on the basis of the distributional 

properties of the linguistic input space. Prepositional relative entropy is a constructional measure that taps into a 

subset of these distributional properties. If discrimination learning is an adequate description of how we become 

sensitive to the distributional properties of a language, we would therefore expect the NDR model to replicate 

the observed effects of Relative Entropy. Baayen et al. (2011) showed that the NDR model correctly predicts the 

chronometric effect of prepositional relative entropy. The current simulation results demonstrate that the NDR 
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model also captures the complex non-linearities in the time, predictor and topographical dimensions that 

characterize the ERP signature of the Relative Entropy effect in the current primed picture naming study. 

A final interesting aspect of the current simulations is a comparison between the model fits for the 

lexical predictors and the model fits for the NDR activations as alternative predictors. In a post-hoc analysis, we 

therefore compared the performance of multiple regression GAMs with tensor product smooths of time by Word 

Length, time by Word Frequency, time by Phrase Frequency and time by Relative Entropy to the performance of 

multiple regression GAMs with tensor product smooths of time by Word Activation and time by Phrase 

Activation for all 4 epochs at all 32 electrodes. All models were fitted on the residuals of the Stratum 1 models 

described in the Analysis section of this paper. 

Given the fact that the contribution of linguistic predictors to the ERP signal is limited, r-squared values 

were very small for both the lexical predictor GAMs and the NDR activation GAMs. On average, the lexical 

predictor GAMs (average r-squared: 0.00027) had somewhat higher r-squared values than the lexical predictor 

GAMs  (average r-squared: 0.00014). The AIC scores of the NDR models (average AIC score: 4263390), 

however, were significantly lower (t = 10.23, p < 0.001) than the AIC scores of the predictor models (average 

AIC score: 4522202). For all 128 epoch-electrode combinations the AIC score of the NDR model was lower than 

that of the corresponding lexical predictor model. The lower AIC scores for the NDR models suggest that the 

NDR activations provide a better account of the ERP signal than the lexical predictors. We will return to this 

issue shortly. 

 

 

 

General Discussion 

 

The first half of this paper presents the results of a primed picture naming study on prepositional phrase 

processing. In this experiment participants were presented with preposition plus definite article primes (e.g.; “on 

the”) followed by target photographs depicting concrete nouns (e.g.; “strawberry”). Participants were asked to 

name the target noun as fast and accurately as possible. We measured the ERP signal after picture onset and 
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analyzed the correlates of four linguistic predictors in this signal using generalized additive models. 

 At the word level we observed theta range (4-7 Hz) oscillations in the left hemisphere tied to the length, 

frequency and prepositional relative entropy of the target word. Theta range oscillations are thought to reflect 

(working) memory demands in language processing and have previously been observed in a variety of language 

processing tasks, including lexico-semantic retrieval, syntactic processing and translation (see, e.g.; Bastiaansen 

et al. (2005); Bastiaansen et al. (2008); Grabner et al. (2007)). The oscillatory activity for all word level 

predictors arose around 100 ms after picture onset. The early onset of the effects for the word level predictors is 

in line with previous studies that established the onset of word length (Hauk et al., 2006) and word frequency 

effects (Hauk et al., 2006; Sereno et al., 1998) around the 100 ms mark. The qualitative, temporal and 

topographical similarity between the effects of the word level predictors is an interesting issue that we will return 

to shortly. 

 Of the word level effects, the effect of relative entropy is of particular theoretical interest. Previously, 

relative entropy effects had only been observed in reaction time studies (see e.g.; Milin et al., 2009a, Milin et al., 

2009b; Kuperman et al., 2010, Baayen et al, 2011). The current study is the first to document a relative entropy 

effect in an ERP study. The effect of relative entropy suggests that the language processing system is sensitive to 

the distributional properties of a noun’s prepositional paradigm as compared to the prepositional frequency 

distribution in the language as a whole. As such, the effect of relative entropy observed here poses a challenge to 

exemplar-based approaches to language processing, such as data-oriented parsing (Bod, 2006) or memory-based 

learning (Daelemans & Bosch, 2005). To account for relative entropy effects exemplar-based models would have 

to assume that frequency information about prepositional phrases and the prepositional phrase prototype is 

available during processing and that the distance between a noun’s prepositional phrase frequency distribution 

and the prototypical prepositional phrase frequency distribution is computed online. 

At the phrase level, we observed an effect of phrase frequency that was qualitatively different from the 

effects of the word level predictors. Persistent negativities arose for prepositional phrases with atypical 

frequencies in the first 300 ms epoch and continued throughout our 900 ms analysis window. More transient 

positivities were present for phrases with more typical frequencies. As for the effect of relative entropy, the effect 

of phrase frequency is well-documented in chronometric studies (see e.g.; Arnon & Snider (2010); Bannard & 
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Matthews, 2008; Shaoul et al., 2009, Tremblay et al., 2009; Tremblay & Baayen, 2010; Siyanova-Chanturia et 

al., 2011; Baayen et al., 2011). Recently, Tremblay & Baayen (2010) documented a phrase frequency effect for 

4-word sequences in a free recall task. The current study adds to these findings by showing a phrase frequency 

effect in a primed picture naming paradigm. The effect of relative entropy was qualitatively similar to that of the 

other word level predictors. By contrast, the effect of phrase frequency differs substantially from the other 

observed effects, including the effect of word frequency. 

 The phrase frequency effect in chronometric studies has been interpreted as evidence for the existence of 

phrasal representations. Bannard & Matthews (2008), for instance, suggest that their finding that young children 

process frequency phrases faster than infrequent phrases indicates the existence of representations at different 

levels of granularity. This fits well with exemplar-based models of language processing, in which phrase 

representations can be stored in the same way word representations are stored. The current pattern of results, 

however, does not straightforwardly support an interpretation of phrase frequency effects in terms of phrasal 

representations: if word representations and phrase representations are stored and accessed in the same way we 

would expect the effects of word frequency and phrase frequency to be highly similar. 

 Discrimination learning offers an alternative to exemplar-based approaches to language processing. In 

the Naive Discriminative Reader (NDR) model (Baayen et al., 2011) no representations beyond the simple word 

level exist. Nonetheless, the NDR successfully replicates the chronometric effects of relative entropy (Baayen et 

al., 2011) and phrase frequency (Baayen et al., 2013a). The second part of this paper presents a simulation study 

in which we demonstrate that the NDR model also captures the complex non-linearities that characterize the 

qualitative, temporal and topographical dynamics of the effects of word length, word frequency, phrase 

frequency and relative entropy in the ERP data. 

 The discriminative learning algorithm that forms the computational core of the NDR model learns 

associations between orthographic input units and semantic outcomes on the basis of the distributional properties 

of the language input space. The relative entropy measure gauges a subset of these distributional properties by 

comparing the prepositional phrase frequency distribution for a given noun against the constructional prototype. 

The similarities between the observed effect of relative entropy and the effect of relative entropy as simulated in 

the NDR model suggest that the human language processing system is at the very least sensitive to those 
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distributional properties of the linguistic input space that are captured by the relative entropy measure. 

Importantly, the effect of relative entropy in the NDR model is a side-effect of the basic process of 

learning a language. No representations beyond the simple word level or frequency counters in the head have to 

be assumed to account for the relative entropy effect. The NDR model therefore offers a parsimonious account of 

relative entropy effects that is grounded in well-established principles of human learning (Wagner & Rescorla, 

1972; Miller et al., 1995; Siegel & Allan, 1996; Chater et al., 2006) that have recently proved insightful for child 

language acquisition (Ramscar et al., 2010; Hsu et al., 2010) and second language learning (Ellis, 2006). 

As noted above, the effects of the word level predictors word length, word frequency and relative 

entropy are qualitatively, temporally and topographically remarkably similar. The NDR model replicates these 

similarities by correctly predicting left-lateralized theta range oscillations that arise around 100 ms after picture 

onset for all three predictors. The similarity of the word length, word frequency and relative entropy effects 

suggests that a single processing mechanism underlies all three effects. From a discriminative learning 

perspective this makes sense. The NDR model has no explicit representations for the distributional properties of 

a word’s prepositional paradigm, nor does it explicitly encode a word’s length or frequency. Instead, the effects 

of these three predictors arise as a straightforward consequence of linguistic discrimination learning. 

An interpretation of the current results in terms of discriminative learning is supported by the lower AIC 

scores for the NDL multiple regression models as compared to the lexical predictor multiple regression models, 

which suggest that discriminative learning offers a superior explanation of the ERP data as compared to standard 

lexical predictors. Although the similarity of the word level predictors is unsurprising from a discriminative 

learning point of view, the lower AIC scores for the NDL multiple regression models remind us of an important 

fact about psycholinguistic research: lexical predictors are descriptive level abstractions from the underlying 

language processing system. While lexical predictors describe the behavioral correlates of (properties of) the 

language processing system, they do not necessarily provide insight into the processing system itself. One of the 

consequences of this is that the presence of a behavioral effect for a lexical predictor therefore does not imply 

the existence of corresponding representations. Bearing Ockham’s razor in mind, quite the opposite is true: if a 

model is able to account for the effect of a lexical predictor without assuming dedicated representations tied to 

that predictor, this model should be preferred above a model that requires additional representations to explain 
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an effect. 

Ockham’s lessons resonate in the correct simulation of the differences between the word frequency and 

phrase frequency effects in the NDR model. As mentioned earlier, phrase frequency effects have been 

interpreted as evidence for the existence of phrase level representations, be they discrete or distributed. In the 

NDR model phrase frequency effects emerge from a simple integration over word level activations. A high 

frequency phrase such as “all over the place” is read faster than a low frequency phrases such as “all over the 

city”, because the letters and letter combinations in “all over the place” have become more associated with the 

meanings ALL, OVER, THE and PLACE than the letters and letter combinations in “all over the city” have 

become associated with the meanings ALL, OVER, THE and CITY during the learning process. The simulation 

of the phrase frequency effect in the NDR model therefore demonstrates that positing phrase level 

representations to explain the phrase frequency effect is unnecessary. 

The NDR activations provide a systematic estimate of the language processing system that gauges the 

learnability of lexical items given the properties of the linguistic input space. The simulation results suggest that 

the learnability of target words and phrases has improved predictive power for the ERP signal in a primed 

picture naming paradigm over a set of standard lexical predictors, while avoiding the multi-collinearity issues 

associated with these predictors. It is important to note, however, that the NDR model itself is an abstractive 

level description that tells us little about the neuro-biological implementation of the discriminative learning 

mechanism it posits. The discrete representations in the NDR model do not do justice to the complex 

architectural and topographical neuro-biological reality of neural networks. Nonetheless, the current simulations 

demonstrate that discrimination learning can help us provide more insight into the behavioral effects of lexical 

predictors and further our understanding of the language processing system. When trying to understand the 

complex dynamic system that language is, there is no harm in starting small. 
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Appendix A 

 

We used generalized additive models (GAMs) to analyze the ERP data for the current experiment (Hastie 

& Tibshirani (1986); Wood (2006), R package MGCV (version 1.6-2)). Unlike traditional ERP analysis 

techniques, GAMs allowed us to investigate the non-linear effects of numerical predictors as they evolve over 

time in the ERP signal. By contrast, traditional ERP analysis typically operate on the basis of dichotomized 

versions of numerical predictors such as word frequency, phrase frequency or relative entropy. The average 

curves for the dichotomized predictors values are then compared in by-item or by-subject analyses (i.e.; low 

frequency versus high frequency). In this appendix we will compare the performance of GAMs to the 

performance of a traditional analysis method for both simulated data and for some of the key predictor effects 

documented in this paper. We will demonstrate that the patterns of results for both types of analyses converge in 

some cases, but that a traditional analysis results in a loss of information or dichotomization artifacts in other 

cases. 

First, consider the simulated predictor effect in the top left panel of Figure 12. The effect is characterized 

by a two-dimensional sinusoid, with oscillations in both the time and the predictor dimension. White noise with 

a mean of 0 and a standard deviation of 0.5 was added to each simulated data point. The middle panel of the top 

row of Figure 12 shows the results of a GAM analysis on this simulated predictor effect. The two-dimensional 

sinusoid in the simulated data is replicated in the GAM analysis. The frequencies of the oscillations in both 

directions and the effect sizes match those in the simulated data. The top right panel of Figure 12 shows the 

results of a dichotomization of the predictor into low and high predictor values based on a split halfway the 

predictor range. No sinusoidal activity is seen for either high or low frequency words and no difference is 

observed between high and low frequency words at any point in time. Dichotomization of the predictor therefore 

entirely masks the two-dimensional oscillatory activity that is present in the simulated data.  

 

[INSERT FIGURE 12 AROUND HERE] 
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The simulated data in the top left panel of Figure 12 were symmetrical with respect to the mid-point of 

the predictor range. For the bottom left panel of Figure 12 we shifted the effect upwards on the y-axis, such that 

the simulated predictor effect is no longer symmetrical with respect to the mid-point of the predictor range. The 

middle panel of the bottom row of Figure 12 demonstrates that this does not constitute a problem for GAMs. As 

before the two-dimensional sinusoid is replicated with the correct frequency in both dimensions and the correct 

effect size. The bottom right panel of Figure 12 shows what happens if the predictor is dichotomized into high 

and low predictor values with a split at the mid-point of the predictor range. Due to the vertical shift of the 

oscillations a traditional analysis now reflects some of the oscillatory activity in the simulated data. The 

observed differences between high and low predictor values, however, reflect the differences between medium 

and low predictor values in the simulated data. All information about the fact that high predictor values and low 

predictor values show a highly similar pattern of results is lost. 

 The problems of dichotomizing numerical predictors outlined above arise in the ERP data reported in 

this paper as well. In what follows, we will examine the performance of a traditional ERP analysis for the most 

typical effects of word frequency, phrase frequency and relative entropy effects in the current data. For each of 

these three predictors, we will compare the GAM analyses in this paper to a traditional analysis of the data for 

the same epoch at the same electrode. 

The left panel of Figure 13 shows the effect of Word Frequency at electrode F3 in the 0 to 300 ms time 

window in the GAM analysis reported here. The effect is characterized by theta range oscillations for both high 

and low frequency words with opposite phases. The oscillations arise around 100 ms after picture onset, but are 

most prominent in the second half of the 0 to 300 ms time window. 

 

[INSERT FIGURE 13 AROUND HERE] 

 

 The right panel of Figure 13 shows the results of a traditional analysis in which we dichotomized Word 

Frequency into high and low frequency words (split halfway the Word Frequency range). The grand mean curves 

for Word Frequency show a similar pattern of results as compared to the GAM analysis, with higher voltages for 

low frequency words from 180 to 260 ms after picture onset and higher voltages for high frequency words from 
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260 to 300 ms after picture onset. Both of these effects reach significance in the item-analysis, as indicated by 

the dark red (α = 0.05) and bright red (Bonferroni-corrected alpha level; α = 0.0004) squares at the bottom of the 

right panel of Figure 13. 

The comparison of the GAM analysis and the traditional analysis for the Word Frequency effect 

demonstrates that the oscillatory effect of Word Frequency in the 0 to 300 ms time window is reflected in the 

grand means curves for high and low frequency words. Rather than being interpreted as theta range 

oscillations, however, this effect would likely be described in terms of ERP components in a traditional analysis 

– with an increased P200 and N300 for low frequency words. 

The effect of Word Frequency in the GAM analysis is relatively simple in nature, with oscillations for 

high and low frequency words that are nicely separated with respect to the middle of the Word Frequency range 

and that have opposite phases. This is close to an ideal scenario for a traditional ERP analysis. The effect of 

Relative Entropy, however, is much more complicated in nature. The left panel of Figure 14 shows the effect of 

Relative Entropy at electrode PO3 in the 0 to 300 ms time window in the GAM analysis. We slightly adjusted the 

z-range of Figure 14 in comparison to the left panel of Figure 7 to reveal in more detail the complicated nature of 

the early effect of Relative Entropy.  

 

[INSERT FIGURE 14 AROUND HERE] 

 

As can be seen in the left panel of Figure 14, the early effect of Relative Entropy is characterized by 

oscillations in both the time and predictor dimension that arise at around 100 ms after picture onset. The 

oscillations are most prominent for extreme predictor values. In contrast to the effect of Word Frequency that we 

saw above, the oscillations for these extreme predictor values are in phase. In between the oscillations for 

extreme values of Relative Entropy are more subtle oscillations for low to medium values of Relative Entropy 

that are opposite in phase to the oscillations for the extreme predictor values.  

The right panel of Figure 14 shows the effect of Relative Entropy at electrode PO3 in a traditional ERP 

analysis in which we dichotomized Relative Entropy into high and low relative entropy on the basis of a split 

halfway the Relative Entropy range (see black line in the left panel of Figure 14). In the grand mean curves for 
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high and low Relative Entropy we see an early positivity from 100 to 170 ms after picture onset for high values 

of Relative Entropy, followed by a negativity for words with high Relative Entropy in the 170 to 275 ms range. 

Both of these effects reach significance in both by-item and by-subject ANOVAs, although not always at 

Bonferroni-corrected alpha levels. 

Interestingly, the positivities at the right edge of the left panel of Figure 14 are not reflected in the grand 

mean curves for high and low values of Relative Entropy. Although this might be related from the fact that item-, 

subject- and trial-related variance were not properly accounted for in the traditional analysis, an alternative 

explanation for this discrepancy is that GAMs tend to be somewhat less reliable near the edges. This is the 

reason we used a 100 ms overlap between subsequent time windows in the GAM analysis reported here to 

establish the consistency of the results for subsequent time windows. 

 The overall pattern of results in the right panel of Figure 14 is consistent with the results of the GAM 

analysis, with the difference between high and low values of Relative Entropy reflecting the facts that 1) the 

oscillations for high values of Relative Entropy cover a larger part of the predictor range than do the oscillations 

for low values of Relative Entropy and 2) the opposite-phase oscillations for low to medium values of Relative 

Entropy partly cancel out the oscillations for low values of Relative Entropy in the dichotomized Relative 

Entropy measure. As for the effect of Word Frequency, this demonstrates that the effects observed in the GAM 

analysis reflect properties of the ERP signal that are visible in the grand mean curves. 

Whereas the qualitative nature of the effect of Word Frequency was accurately captured by a traditional 

ERP analysis, however, a lot of detail is lost about the effect of Relative Entropy through dichotomization. From 

the right panel of Figure 14, for instance, it would be impossible to tell that the effects for high and low values of 

Relative Entropy are in fact highly similar and that the differences in the grand mean curves for the dichotomized 

predictor are driven primarily by the opposite-phase theta range oscillations for low to medium values of 

Relative Entropy. 

Theta range oscillation in the time dimension characterized he effects of Word Frequency and Relative 

Entropy.  For Phrase Frequency, we observed effects that persisted over time. The left panel of Figure 15 shows 

the effect of Phrase Frequency at electrode CP5 in the 400 to 700 ms time window. For both high and low 

frequency words we see long-lasting negativities. For high frequency phrases these negativities fade out near the 
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end of the time window, whereas for low frequency phrases the negativities persist through the epoch. By 

contrast, the Phrase Frequency effects for phrases with intermediate frequencies are characterized by more 

transient positivities. 

 

[INSERT FIGURE 15 AROUND HERE] 

 

The right panel of Figure 15 shows the results of a traditional ERP analysis in which Phrase Frequency 

was dichotomized halfway the phrase frequency range (see black line in the left panel of Figure 15). This 

analysis shows a difference between high and low frequency words in the first half of the 400 to 700 ms time 

window. As we will argue below, this effect is likely to be an artifact of dichotomizing Phrase Frequency. 

The artifactual nature of the Phrase Frequency effect in the traditional analysis does not immediately 

become clear from a visual inspection of the left panel of Figure 15. At first glance, it seems that the grand mean 

curve for high frequency phrases should show an early null effect or even a small positivity as compared to low 

frequency phrases. The probability distribution of predictor values, however, is not uniform in nature, nor is it 

normally distributed with a mean halfway the Phrase Frequency predictor range. The yellow bulge for medium 

to high frequency phrases in the left panel of Figure 15 represents relatively few data points (24% of the data 

points are between the mid-point of the Phrase Frequency range (0.40) and a predictor value of 2.00). By 

contrast, the green area for medium to low frequency words represents a large number of data points (65% of the 

data points are between -1.2 and 0.4). As a result the negativity for the highest frequency phrases is cancelled out 

to a much lesser extent by small positive voltages for medium to high frequency phrases than the negativity for 

the lowest frequency phrases is cancelled out by average voltages for medium to lower frequency phrases. 

Due to the nature of the probability distribution of the phrase frequencies, therefore, a dichotomization 

with a split halfway the Phrase Frequency range leads to the incorrect conclusion that voltages for high 

frequency phrases are lower than those for low frequency phrases. This conclusion would be supported by the 

fact that this difference is significant at a substantial number of data points in the time dimension in both by-item 

and by-subject analyses, albeit rarely at a Bonferroni-corrected alpha level. As such a dichotomization of Phrase 

Frequency could lead to incorrect conclusions about the nature of the Phrase Frequency effect observed here. 
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A further problem with a traditional analysis of the Phrase Frequency effect is that dichotomization of 

the Phrase Frequency predictor results in a loss of information with respect to the U-shaped nature of the phrase 

frequency effect along the y-axis. The right panel of Figure 15 does not provide any information about the fact 

that intermediate values of Phrase Frequency are characterized by higher voltages than low or high values of 

Phrase Frequency – let alone about how these positivities for medium values of Phrase Frequency evolve over 

time within the 400 to 700 ms window. 

To end our conclusion of the traditional analysis of the Phrase Frequency effect on a positive note, we 

should mention that the traditional analysis does pick up on the fact that negativities for high frequency phrases 

fade out over time: as a result of the relative increase of the voltages for the highest frequency phrases as 

compared to the lowest frequency phrases the difference between the grand mean curves for high and low 

frequency phrases decreases as a function of time in the right panel of Figure 15.  

In this appendix we compared the GAM analyses reported in this paper to traditional ERP analyses using 

predictor dichotomization for simulated data, as well as for some of the key effects reported in this paper. 

Generally speaking, two conclusions can be drawn from this comparison. First, the GAM analyses reported here 

seem to provide estimates of predictor effects that are compatible with the grand mean curves. The results of a 

GAM analysis and a traditional analysis converge when dichotomization of a predictor is relatively 

unproblematic given the nature of a predictor effect. When this is not the case, the differences that arise between 

the results from a GAM analysis and a traditional analysis are easily explained given the information about the  

nature of the predictor effect provided by the GAMs. 

Second, a GAM analysis provides much more information than does a traditional analysis in which 

predictors are dichotomized. In a dichotomization analysis predictor values with very different patterns of results 

are grouped together, which can result in a loss of statistical power. In addition, the nature of tri- or multipartite 

predictor effects is – by definition – lost when a predictor is dichotomized. This can lead to a loss of information 

or misguided conclusions about the nature of an effect. By contrast, as seen in the analysis of the simulated data 

GAM analyses accurately capture non-linear predictor effects as they evolve over time. 

Some of the problems associated with a traditional dichotomization analysis can be overcome by 

choosing an experimental design that investigates the effect of a single categorical predictor with carefully 
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selected predictor values that fall into two or more discrete categories. Many of the questions in psycholinguistic 

research, however, are easier to answer in multiple regression designs that allow for the simultaneous 

investigation of the effect of multiple numerical predictors with continuous distributions. The experimental 

design and analysis techniques presented here provide an example of how the multiple regression techniques that 

have become commonplace in reaction time studies can be applied in ERP studies through the use of GAMs. As 

demonstrated in this appendix, the results from such a GAM analysis provide precise information about the 

linear and non-linear nature of the effects of multiple numerical predictors as they evolve over time. 
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Appendix B 

 

 For the GAM analyses reported in this paper we used a hierarchical modeling strategy with analysis 

windows of 300 milliseconds and a 100 ms overlap between time windows to verify the consistency of results 

between subsequent time windows. This modeling approach ensures that participant- and item-related variance, 

as well as task effects and the grand average over time are removed from the data prior to the estimation of the 

predictor effects as they evolve over time. 

An alternative modeling strategy would involve fitting non-hierarchical GAMs on larger time windows. 

In this appendix, we present the results of such a non-hierarchical modeling strategy in which we included the 

main trend over time, by-participant smooths over time (restricted to 20 knots), by-participant trial smooths, 

random intercepts for prepositional phrase (e.g., “with the”) and noun (e.g., “saw”), an autocorrelation correction 

parameter (ρ = 0.75), as well as predictor main effect smooths and time by predictor tensor product interactions 

(restricted to 10 knots in the time dimension and 5 knots in the predictor dimension) in models fitting the ERP 

signal from 0 to 600 ms after picture onset. 

The results of this analysis for the key effects of Word Frequency, Phrase Frequency, Relative Entropy 

and NDL Activation reported in this paper are shown in Figure 16. The top row of each of the four panels of 

Figure 16 shows the results for each predictor in the 0-300 and 200-500 ms time windows as reported in this 

paper. The bottom row of each panel presents the results from non-hierarchical analyses for Word Frequency, 

Phrase Frequency, Relative Entropy and NDL Activation on a larger 0-600 ms time window.  

 

[INSERT FIGURE 16 AROUND HERE] 

 

Overall, the qualitative nature of the effects for Word Frequency, Phrase Frequency, Relative Entropy 

and NDL Activation in the non-hierarchical analysis on a 600 ms time window is highly similar the qualitative 

nature of these effects in hierarchical GAMs on 300 ms time windows. For Word Frequency and NDL Activation 

we continue to see theta range oscillations for extreme predictor values. In addition, theta range oscillations 

throughout the predictor dimension characterize the effect of Relative Entropy in both analyses. 
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For Phrase Frequency, there is limited evidence for a tensor product interaction with Time (p = 0.07) in 

the non-hierarchical GAM. Instead, we observed a main effect of Phrase Frequency over time that closely 

resembles the nature of the Phrase Frequency effect in the second half of the 0 to 300 ms time window and 

throughout the 200 to 500 ms time window, with negativities for low frequency phrases, more positive voltages 

for phrases with intermediate frequencies and negativities for high frequency phrases. The non-hierarchical 

GAM on the full 0-600 ms time window shows a further positivity for phrases with extremely high frequencies. 

Given the limited number of predictor values greater than 2 (2.98% of the data), however, it is unclear how 

robust this effect is.  The fact that a tensor product interaction with Time characterizes the Word Frequency effect 

in the non-hierarchical GAM on the 0-600 ms time window, whereas the effect of Phrase Frequency is best 

described by a main effect of Phrase Frequency confirms once more that the effects of Word Frequency and 

Phrase Frequency are qualitatively different. 

Despite the overall similarity of the results for the hierarchical GAMs fit to 300 ms time windows and 

the results for the non-hierarchical GAMs on 600 ms time windows, there are two differences between the 

results presented in the top rows and in the bottom rows of the four panels of Figure 16. The first difference 

concerns the reliability of GAMs near the edges of the analysis window. In the analysis using 300 millisecond 

time windows, we see effects in the last 50 ms of the 0-300 ms time window and in the first 50 ms of the 200-

500 ms time window for Word Frequency (positivities for high predictor values), Relative Entropy (positivities 

for high predictor values) and NDL Activation (positivities for high predictor values, negativities for low 

predictor values) that are not reflected in the corresponding analyses for the larger 600 millisecond time 

windows. This demonstrates that effects in the first 50 ms and the last 50 ms of our 300 ms time windows have 

to be interpreted with caution. The same caution is required with respect to the interpretation of the first and last 

50 milliseconds in analyses for the 600 ms time intervals. 

The second difference between the analyses in the top and bottom rows of the four panels of Figure 16 is 

that the analysis using separate 0 to 300 and 200 to 500 ms time windows results in more conservative estimates 

of the effect sizes of the Word Frequency, Phrase Frequency, Relative Entropy and NDL Activation effects as 

compared to the analysis for the full 0 to 600 ms time window. It is likely that nearly doubling the number of 

data points both increases the power of the GAMs and allows it to estimate amplitudes with greater precision. 
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This comes at the price of having to increase the number of basis functions for the time dimension, in order to 

allow the model to pick up changes in amplitude over time with the same granularity as in the analyses using 

restricted 300 ms time windows. 

For this study, we decided to follow a conservative modeling strategy, using overlapping time windows 

of 300 ms and the default settings for the number of basis functions used by the mgcv package for R.  This 

choice also comes with a practical advantage, namely that the time required for fitting a model to hundreds of 

thousands if not millions of data points is substantially reduced. 
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Footnotes 

 
1 One of our reviewers pointed out that due to the high correlation between word frequency and determiner plus 

noun bigram frequency any effect of word frequency may instead be an effect of bigram frequency. We would 

like to make explicit here that we are in no way opposed to such an interpretation of any word frequency effects 

documented here. By contrast, we believe that word frequency effects for a large part reflect local syntactic co-

occurences (see e.g.; Baayen (2010)). 
 

2 Note that for oscillatory effects the phase of an oscillation co-determines the significance of an effect at a given 

point in time. Converting the signal to the frequency domain does not help solve this problem. Potential 

oscillations in the predictor dimension further complicate the process of determining the exact onset of an effect. 

As a result, the numbers reported for oscillatory effects here are conservative estimates for the temporal onset of 

these effects. 

 
3 Phrase frequency effects have not been documented in the naming aloud literature. We therefore have not yet 

attempted to simulate phrase frequency effects in the NDRa model. 
 

4 The effect of Word Activation also reached significance from 57 to 81 ms after picture onset for predictor values 

between 0.59 and 0.89. Given the limited effect size of this extremely early effect of Word Activation (see Figure 

9), however, we will not discuss this effect in more detail.  
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Table Captions 

 

Table 1. Summary of the independent variables (log) Word Length, (log) Word Frequency, (log) Phrase 

Frequency and Relative Entropy. Range is the original range of the predictor. Adjusted range is the range after 

removing predictor outliers. Mean, median and sd are the means, medians and standard deviations after outlier 

removal, but prior to residualization. 
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predictor	 range	 adjusted	range	 mean	 median	 sd	 	

WordLength	 1.10	-	2.30	 1.10	–	2.08	 1.58	 1.61	 0.26	 	

WordFrequency	 12.90	–	18.96	 13.60	–	18.37	 15.74	 15.50	 1.25	 	

PhraseFrequency	 0	–	14.69	 6.77	–	12.65	 8.73	 8.57	 1.23	 	

RelativeEntropy	 0.10	–	2.34	 0.10	–	1.39	 0.54	 0.55	 0.28	 	



 64 

Figure Captions 

 

Figure 1. Main trend in the ERP signal at electrode Cz as predicted by the main trend GAM (black lines) and as 

observed (red dots). 

 

Figure 2. Left panel: percentage of data points after the onset of articulation as a function of time. Right panel: 

average root mean square (RMS) across all electrodes from -100 to 900 ms after picture onset. 

 

Figure 3. Effect for (log) Word Length in the naming latencies. 

 

Figure 4. Effect for (log) Word Length over time at representative example electrodes. Color coding indicates 

voltages (in µV), with warmer colors representing higher voltages. Picture insets show the topography of the 

effect, with bright red indicating significance at the Bonferroni-corrected alpha level (p < 0.0004) and dark red 

indicating significance at the non-corrected alpha level (p < 0.05).  

 

Figure 5. Effect for (log) Word Frequency over time at representative example electrodes. 

 

Figure 6. Effect for (residualized log) Phrase Frequency over time at representative example electrodes. 

 

Figure 7. Effect for (residualized) Relative Entropy over time at representative example electrodes. 

 

Figure 8. Effect for Word Length as simulated by the Naive Discriminative Reader. The reported correlation is 

the correlation between the observed and simulated contour surfaces at the presented example electrodes. 

 

Figure 9. Effect for Word Frequency as simulated by the Naive Discriminative Reader. The y-axis is flipped 

vertically to allow for an easy comparison with the observed effect of Word Frequency. 

 

Figure 10. Effect for Phrase Frequency as simulated by the Naive Discriminative Reader. The y-axis is flipped 

vertically to allow for an easy comparison with the observed effect of Phrase Frequency. 

 

Figure 11. Effect for Relative Entropy as simulated by the Naive Discriminative Reader. 

 

Figure 12. Simulated predictor effect with an oscillation in both the time and predictor dimension (left panels) 

and model fits for this effect in a GAM analysis (middle panel) and a traditional analysis using predictor 

dichotomization (right panels). 
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Figure 13. The effect of Word Frequency at electrode F3 in the 0 to 300 ms time window in a GAM analysis (left 

panel) and a traditional analysis in which Word Frequency is dichotomized (right panel). Color coding at the 

bottom of the right panel indicates significance of the Word Frequency effect in by-item and by-subject ANOVAs 

for each point in time. 

 

Figure 14. The effect of Relative Entropy at electrode PO3 in the 0 to 300 ms time window in a GAM analysis 

(left panel) and a traditional analysis in which Relative Entropy is dichotomized (right panel). 

 

Figure 15. The effect of Phrase Frequency at electrode CP5 in the 400 to 700 ms time window in a GAM 

analysis (left panel) and a traditional analysis in which Phrase Frequency is dichotomized (right panel). 

 

Figure 16. The effects of Word Frequency (top left panel), Phrase Frequency (top right panel), Relative Entropy 

bottom left panel) and Activation Word (bottom right panel) at electrode relevant example electrodes in a 

hierarchical GAM analysis using 300 ms time windows with a 100 ms overlap between subsequent time 

windows (top row of each panel) and a non-hierarchical GAM analysis using 600 ms time windows (bottom row 

of each panel). 

 

 



 66 

 

0 50 100 150 200 250 300

−1
.0

−0
.5

0.
0

0.
5

1.
0

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●
●

●

●●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●●

●

●
●
●

●

●
●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●
●

●

200 250 300 350 400 450 500

−1
.0

−0
.5

0.
0

0.
5

1.
0

●

●
●
●

●

●
●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

400 450 500 550 600 650 700

−1
.0

−0
.5

0.
0

0.
5

1.
0

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

600 650 700 750 800 850 900

−1
.0

−0
.5

0.
0

0.
5

1.
0

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

main trend
µV

time (ms)



 67 

 

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Articulation artifacts

time (ms)

Pe
rc

en
ta

ge
 o

f a
ffe

ct
ed

 tr
ia

ls

0 200 400 600 800

0
2

4
6

8
10

Average RMS

time (ms)

R
M

S



 68 

 

1.2 1.4 1.6 1.8 2.0

75
0

80
0

85
0

90
0

(log) Length

RT
 (m

s)



 69 

 

0 50 100 150 200 250 300

1.
2

1.
4

1.
6

1.
8

2.
0  −0.2 

 0  0  0 

 0 
 0 

 0
 

 0.2 

 0.2 

P3:  0.000

200 250 300 350 400 450 500

1.
2

1.
4

1.
6

1.
8

2.
0

 −
0.

2 

 −0.2 

 0  0 

 0  0 

 0 

 0 

 0
.2

 

 0.2 
CP1:  0.000

400 450 500 550 600 650 700

1.
2

1.
4

1.
6

1.
8

2.
0

 0 

 0 

 0  0  0 

 0
.2

 

C3:  0.001

600 650 700 750 800 850 900

1.
2

1.
4

1.
6

1.
8

2.
0

 0  0  0 

Pz:  0.003

Le
ng

th

time (ms)

Length



 70 

 

0 50 100 150 200 250 300

14
15

16
17

18

 −0.2 

 −
0.

2 

 0  0  0 
 0 

 0.2 

 0.2 

 0.2 
 0.4 

F3:  0.000

200 250 300 350 400 450 500

14
15

16
17

18  −0.2 

 0 

 0  0 
 0 

 0
 

 0
.2

  0.2 

F3:  0.000

400 450 500 550 600 650 700

14
15

16
17

18

 −0.2 

 −0.2  0 

 0  0  0 

 0 

 0.2 

F3:  0.038

600 650 700 750 800 850 900

14
15

16
17

18

 −0
.2 

 −0.2 

 0 

 0 

 0  0 

 0 

 0.2 

 0.2 

 0.2 

F3:  0.000

W
or

d 
Fr

eq
ue

nc
y

time (ms)

Word Frequency



 71 

 

0 50 100 150 200 250 300

−1
0

1
2

 −0.4 

 −0.2 

 −0.2  0 

 0 

 0 

T7:  0.000

200 250 300 350 400 450 500

−1
0

1
2

 −0.4 

 −0.4 
 −0.2 

 −0.2 

 −0.2 

 0 

 0 

 0 

 0.2 

CP5:  0.000

400 450 500 550 600 650 700

−1
0

1
2

 −0.6 

 −0.6 

 −0.4 

 −0.4 

 −0.2 

 −0.2 

 0 

 0 

 0 

 0.2 

CP5:  0.000

600 650 700 750 800 850 900

−1
0

1
2

 −0.4  −0.2 

 −0
.2 

 −0.2 

 0 

 0 

 0 

 0.2 
 0.4 

FC5:  0.000

Ph
ra

se
 F

re
qu

en
cy

time (ms)

Phrase Frequency



 72 

 

0 50 100 150 200 250 300

−0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

 −0.2 

 −0.2 

 0  0 

 0 

 0 
 0 

 0 

 0.2 

 0.2 

 0.2 
 0.4 

PO3:  0.000

200 250 300 350 400 450 500

−0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

 −
0.

2 

 −0.2 

 −0.2 
 0  0  0  0 

 0 

 0.2 

 0.2 

 0.2 

 0.2  0
.4

 

PO4:  0.000

400 450 500 550 600 650 700

−0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

 −0.2 

 −0.2 

 0 

 0  0 

 0 

 0 

 0.2 

C3:  0.017

600 650 700 750 800 850 900

−0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

 −0.4 

 −0.2 

 0 
 0 

 0 
 0 

 0.2 

 0.2 

 0.2 

 0.
4 

FC1:  0.000

R
el

at
ive

 E
nt

ro
py

time (ms)

Relative Entropy



 73 

 

0 50 100 150 200 250 300

0.
5

1.
0

1.
5

2.
0

2.
5  −0.2 

 0  0  0 

 0 

 0.2 

 0.2 

O1:  0.000

200 250 300 350 400 450 500

0.
5

1.
0

1.
5

2.
0

2.
5

 −0.2 

 0 

 0 

 0 

 0 
 0 

 0 

 0.2 

C3:  0.000

400 450 500 550 600 650 700

0.
5

1.
0

1.
5

2.
0

2.
5

 0 

 0 

 0 

 0  0 

 0.2 
FC5:  0.803

600 650 700 750 800 850 900

0.
5

1.
0

1.
5

2.
0

2.
5

 0 
 0 

 0 

PO4:  0.305

r = 0.290, p < 0.001

W
or

d 
Ac

tiv
at

io
n

time (ms)

Length



 74 

 

0 50 100 150 200 250 300

2.
5

2.
0

1.
5

1.
0

0.
5

 −0.2 

 −0.2 

 −
0.

2 

 0 

 0 

 0 

 0  0  0 

 0.2 

 0.2 

 0.2 

 0.2 

C3:  0.000

200 250 300 350 400 450 500

2.
5

2.
0

1.
5

1.
0

0.
5

 −0.2 

 0 

 0 

 0 

 0 
 0 

 0 

 0.2 

C3:  0.000

400 450 500 550 600 650 700

2.
5

2.
0

1.
5

1.
0

0.
5

 0  0 

 0 

 0 

 0 

C3:  0.264

600 650 700 750 800 850 900

2.
5

2.
0

1.
5

1.
0

0.
5

 −0.4 

 −0.2 

 −
0.

2 

 0  0 

 0  0 

 0.2 

 0.2 

 0.2 

 0.2 

C3:  0.000

W
or

d 
Ac

tiv
at

io
n

time (ms)

r = 0.208, p < 0.001
Word Frequency



 75 

 

0 50 100 150 200 250 300

0.
3

0.
2

0.
1

0.
0

−0
.2

 −0.2 

 −0.2 

 0 

 0 

 0 

 0.2 

 0.2 
T7:  0.012

200 250 300 350 400 450 500

0.
3

0.
2

0.
1

0.
0

−0
.2

 −0.8  −0.6 

 −0.6 

 −0.4 

 −0.4  −0.2 

 −0.2 

 0 

 0 
 0 

 0 

 0.2 

P3:  0.000

400 450 500 550 600 650 700

0.
3

0.
2

0.
1

0.
0

−0
.2

 −0.8 

 −0.6 

 −0.6 

 −0.4 

 −0.4 

 −0.2 

 −0.2 

 0 

 0 

 0 

 0.2 

 0.2 

 0.2 

 0.2 

P3:  0.000

600 650 700 750 800 850 900

0.
3

0.
2

0.
1

0.
0

−0
.2

 −0.8  −0.6  −0.4 

 −0.2 

 −0.2 

 0  0  0 

 0.2 

C3:  0.000

Ph
ra

se
 A

ct
iva

tio
n

time (ms)

r = 0.539, p < 0.001
Phrase Frequency



 76 

 
  

0 50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 −0.4 

 −
0.

4 

 −0.2 

 −0.2 

 0  0  0 
 0 

 0.2 

 0.2 

 0.2 

 0.4 
O2:  0.000

200 250 300 350 400 450 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 −0.6 

 −
0.

2 

 −0.2 

 −0.2 

 −0
.2 

 −0.2 

 0 
 0 

 0 

 0 
 0  0 

 0.
2 

 0.2 

 0.2 
 0.2 

 0.2 

 0.2 

 0.4 
P8:  0.000

400 450 500 550 600 650 700

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 0  0 

 0 

 0  0 
 0.2 

CP1:  0.031

600 650 700 750 800 850 900

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 −0.6 

 −0.2 

 −0.2 

 0  0 

 0 

 0 
 0  0.2 

 0.2 

 0.2 

 0.2 

 0
.2

 

FC1:  0.000

R
el

at
ive

 E
nt

ro
py

time (ms)

r = 0.381, p < 0.001
Relative Entropy



 77 

 
  

time

pr
ed

ic
to

r

 −0.8 

 −0.8 

 −0.8 

 −0.8 

 −0.8 

 −0.6 

 −0.4 

 −0.4 

 −0.4 

 −0.4 

 −0.4 

 −0.2 

 −0
.2 

 −0
.2 

 −
0.

2 

 −0.2 

 0 

 0  0 

 0 

 0.2 
 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

 0.4 

 0.4 

 0.6 

 0.
6 

 0.6  0.8 

 0.8 

 0.8 

 0.
8 

600 650 700 750 800 850 900

4
6

8
10

12

600 650 700 750 800 850 900

4
6

8
10

12

time (ms)

pr
ed

ic
to

r

 −1 

 −1 

 −1 

 −0.6 

 −0.6 

 −0.6  −0.4 

 −0.4 

 −0.4 

 −0.2 

 −0
.2 

 −0
.2 

 −0.2 

 −0.2 

 0 

 0  0 

 0.2 

 0.2 

 0.2 
 0.2 

 0.4 

 0.4 

 0.4 

 0.4 

 0.6 

 0.
6 

 0.6 

 0
.8

 

 0.8 

 0.
8 

 1 

600 650 700 750 800 850 900

−1
.0

0.
0

0.
5

1.
0

time (ms)

µV

predictor: low
predictor: high

time

pr
ed

ic
to

r

 −0.8 

 −0.8 

 −0.8 

 −
0.

6 

 −0.6 

 −0.6 

 −0.6 

 −0.4 

 −0.4 

 −0.4  −0.2 

 −0
.2 

 −0.2 

 −
0.

2 

 0 

 0  0  0 

 0.2 
 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

 0.4 

 0.4 

 0.
6 

 0.
6 

 0.6 

 0.8 

 0.8 

 0.
8 

600 650 700 750 800 850 900

4
6

8
10

12

600 650 700 750 800 850 900

4
6

8
10

12

time (ms)

pr
ed

ic
to

r

 −
1  −0

.8 

 −0.8 

 −0.6 

 −0.6 

 −0.6 

 −0.6 

 −0.4 

 −0.4 

 −
0.

4  −0
.2 

 −0
.2 

 0 

 0 

 0 

 0 

 0.2 

 0.2 

 0.2 
 0.2 

 0.4 

 0
.4

 

 0.4 

 0.6 

 0.6 

 0
.6

 

 0.
8 

 0.8 

 0.8 

 1 

 1
 

600 650 700 750 800 850 900

−1
.0

0.
0

0.
5

1.
0

time (ms)

µV

predictor: low
predictor: high



 78 

 
  

0 50 100 150 200 250 300

14
15

16
17

18

time (ms)

W
or

d 
Fr

eq
ue

nc
y

 −0.2 

 −
0.

2 

 0  0  0 
 0 

 0.2 

 0.2 

 0.2 
 0.4 

Word Frequency (F3)

0 50 100 150 200 250 300

−4
−3

−2
−1

0

time (ms)

µV

low frequency
high frequency

Word Frequency (F3)

item analysis:
subject analysis:



 79 

 
  

0 50 100 150 200 250 300

−0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

time (ms)

W
or

d 
Fr

eq
ue

nc
y

 −0.3 

 −0.3 

 −0.2 

 −0
.1 

 −0.1 

 −0.1 

 −0.1 

 −0.1 

 0 

 0 

 0 

 0 
 0 

 0 

 0.1 

 0.1 

 0.1 

 0.1 

 0.2 

 0.2 

 0.2 

 0.2 

 0
.2

 

 0.3 

 0.3 

Relative Entropy (PO3)

0 50 100 150 200 250 300

−5
0

5

time (ms)

µV

low rel. entropy
high rel. entropy

Relative Entropy (PO3)

item analysis:
subject analysis:



 80 

 

400 450 500 550 600 650 700

−1
0

1
2

time (ms)

Ph
ra

se
 F

re
qu

en
cy

 −0.6 

 −0.6 

 −0.4 

 −0.4 

 −0.2 

 −0.2 

 −0.2 

 0 
 0 

 0 

 0.2 

 0.2 

Phrase Frequency (CP5)

400 450 500 550 600 650 700

−1
0

1
2

3

time (ms)

µV

low frequency
high frequency

Phrase Frequency (CP5)

item analysis:
subject analysis:



 81 

 

0 50 100 150 200 250 300

14
15

16
17

18

F3:  0.000

time (ms)

W
or

d 
Fr

eq
ue

nc
y

 −0.2 

 −
0.

2 

 0  0  0  0 

 0.2 

 0.2 

 0.2 
 0.4 

200 250 300 350 400 450 500

14
15

16
17

18

F3:  0.000

time (ms)
W

or
d 

Fr
eq

ue
nc

y  −0.2 

 0 

 0  0 
 0 

 0 

 0
.2

  0.2 

0 100 200 300 400 500 600

14
15

16
17

18

F3:  0.000

time (ms)

W
or

d 
Fr

eq
ue

nc
y  −0.6 

 −0.4 

 −0.4 

 −0.2 

 −0.2 

 −0.2 

 0 

 0 

 0 

 0 

 0 

 0 

 0.2 

 0.2 

 0.4 

 0.6 

0 50 100 150 200 250 300

−2
−1

0
1

2

T7:  0.000

time (ms)

Ph
ra

se
 F

re
qu

en
cy

 −0.4 

 −0.2 

 −0.2  0 

 0 

 0 

200 250 300 350 400 450 500

−2
−1

0
1

2

CP5:  0.000

time (ms)

Ph
ra

se
 F

re
qu

en
cy

 −0.4 

 −0.4 
 −0.2 

 −0.2 

 −0.2 

 0 

 0 

 0 

 0.2 

−2 −1 0 1 2

−2
.0

−1
.0

0.
0

1.
0

CP5:  0.000

Phrase Frequency
µV

0 100 200 300 400 500 600

−2
−1

0
1

2

CP5:  0.070

time (ms)

Ph
ra

se
 F

re
qu

en
cy

 −0.2 

 0 
 0 

 0 

 0.
2 

0 50 100 150 200 250 300

−0
.4

0.
0

0.
4

0.
8

PO3:  0.000

time (ms)

R
el

at
ive

 E
nt

ro
py

 −0.2 

 −0.2 

 0  0 

 0 

 0 
 0 

 0 

 0.2 

 0.2 

 0.2 

 0.2 
 0.4 

200 250 300 350 400 450 500

−0
.4

0.
0

0.
4

0.
8

PO4:  0.000

time (ms)

R
el

at
ive

 E
nt

ro
py

 −
0.

2 

 −0.2 

 −0.2 
 0  0  0  0 

 0 

 0.2 
 0.2 

 0.2 

 0.2  0
.4

 

0 100 200 300 400 500 600

−0
.4

0.
0

0.
4

0.
8 Pz:  0.000

time (ms)

R
el

at
ive

 E
nt

ro
py  −0.8 

 −0.6 
 −0.4 

 −0.2 

 −0.2 

 −0.2 

 −0.2 

 −0
.2 

 0 

 0 

 0 

 0 
 0 

 0 

 0.2 

 0.2 

 0.2 

 0.2 

 0.4 

 0.6 

 0.8 

0 50 100 150 200 250 300

2.
5

1.
5

0.
5

C3:  0.000

time (ms)

W
or

d 
Ac

tiv
at

io
n

 −0.2 

 −0.2 

 −
0.

2 

 0 

 0 

 0 

 0  0  0 

 0.2 

 0.2 

 0.2 

 0.2 

 0.2 

200 250 300 350 400 450 500

2.
5

1.
5

0.
5

C3:  0.000

time (ms)
W

or
d 

Ac
tiv

at
io

n

 −0.2 

 −0.2 

 0 

 0 

 0 

 0 

 0 

 0 

 0.2 

 0.2 

0 100 200 300 400 500 600

2.
5

2.
0

1.
5

1.
0

0.
5

C3:  0.000

time (ms)

W
or

d 
Ac

tiv
at

io
n

 −0.2 

 −0.2 

 −0.2 

 −0.2 

 −0.2 

 0 

 0 

 0 
 0 

 0 

 0 

 0 

 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

Relative Entropy NDL Activation

Word Frequency Phrase Frequency


