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We investigate the role of information-theoretic measures for compound word read-
ing in two languages: Mandarin Chinese and English. For each language, we re-
port the results of two analyses: a time-to-event analysis using piece-wise additive
mixed models (pamms) and a causal inference analysis with causal additive models
(cams). We use the pamm analyses to gain insight into the temporal profile of
the effects of information-theoretic measures in the word naming task. For both
English and Mandarin Chinese, we observed early effects of the entropy of both con-
stituents, as well as temporally widespread effects of point-wise mutual information
(pmi). The cam analyses provide further insight into the relations between lexical-
distributional variables. The image that emerges from the cam analyses is that
the information-theoretic measures entropy and pmi are embedded in a carefully
balanced system in which lexical-distributional properties that lead to processing
difficulties are offset by lexical-distributional properties that guarantee successful
communication. The information-theoretic measures have a central position in this
system, and are causally influenced not only by frequency, but also by the effects
of other lower-level lexical-distributional variables such as visual complexity, and
phonology-to-orthography consistency.

Keywords: information theory, compounds, entropy, mutual information, Mandarin
Chinese, PAMM, CAM

Introduction

In 1948, Claude Shannon proposed information the-
ory in his seminal paper “A Mathematical Theory of
Communication” (Shannon, 1948). Information theory
provides a mathematical description of the concept of
information in human and non-human communication.
In the last decade-and-a-half, nearly sixty years after
Shannon’s first publication on the subject, interpreta-
tions of behavioral data in language processing from
the perspective of information theory have started to
emerge. These interpretations typically focus on the
effects of measures derived from information theory on
a behavioral measure of language processing, such as
the reaction time in a lexical decision experiment or the
acoustic duration of a word. The information-theoretic
measures either encode the amount of uncertainty in
the signal (e.g., entropy), or, conversely, the extent to
which uncertainty is reduced by the signal (e.g., asso-
ciation measures, conditional probability). The extent
to which the signal reduces uncertainty is referred to as
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information.
Entropy measures the uncertainty in the signal, quan-

tified as the average number of bits required to encode
a signal. The number of bits of a signal is defined as
the log of the inverse of its probability. Entropy is the
sum over the number of bits of the potential signals,
weighted for the probability of these messages:

H =
n∑

i=1

P(i) ∗ log2
1

P(i)
(1)

where Pi is the probability of message i.
The more similar the probabilities of the potential sig-

nals, the greater the uncertainty about the signal, and
the higher the entropy. As an example, consider the
probability distribution of compounds in which the left
constituent is “star”. The first column of Table 1 pro-
vides the frequency (per million words) in subtlex-uk

(Van Heuven, Mandera, Keuleers, & Brysbaert, 2014)
for the 5 noun-noun compounds in the English Lexicon
Project (henceforth elp Balota et al., 2007) for which
the modifier is “star”: “starboard”, “starlight”, “star-
dust”, “starfish”, and “stargazer”.

The second column of Table 1 converts the frequen-
cies into probabilities (Pi = fi∑ n

i=1 fi
). Next, we calculate
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Table 1
Entropy for compounds with the left constituent “star”.

compound fi P(i) log2
1

P(i) P(i) ∗ log2
1

P(i)

starboard 6.55 0.675 0.567 0.383
starlight 1.59 0.164 2.608 0.428
stardust 0.78 0.080 3.644 0.292
starfish 0.75 0.077 3.699 0.285
stargazer 0.04 0.004 7.966 0.032

sum 9.71 1.000 - 1.419

the binary logarithm of the inverse probabilities, which
represents the number of bits required to encode each
of the compounds. The binary logarithm of the inverse
probabilities is presented in the third column of Table 1.
To calculate the average number of bits required to en-
code a compound that starts with “star”, the number
of bits required to encode each compound is weighted
for the probability of the compound. This reflects the
fact that the need to encode “starboard” arises more
often than the need to encode “starfish” or “stargazer”.
Summing across the probability-weighted number of bits
required to encode each compound in the fourth column
of Table 1 yields the entropy over the probabilities for
the noun-noun compounds in which the left constituent
is “star”, which is 1.419.

Bien, Levelt, and Baayen (2005) explored the role
of entropy in compound processing. The authors mea-
sured onset latencies for productions of Dutch com-
pound words in a position-response association task.
Higher values for the entropy of both the left constituent
(as in Table 1) and the right constituent corresponded
to shorter naming latencies. Response times thus were
shorter for compounds that consist of constituents that
occur in a higher number of compounds with more sim-
ilar frequencies.

The relevance of entropy for compound processing
was confirmed by Kuperman, Pluymaekers, Ernestus,
and Baayen (2007), who investigated the effect of en-
tropy on acoustic durations of interfixes in Dutch com-
pounds. The authors analysed the acoustic duration of
linking morphemes in Dutch compounds. In the Dutch
compound “ballenbak” (“ball pit”), for instance, the
constituents (“ball”) and “bak” (“pit”, literally “bin” or
“container”) are linked through the interfix “-en”. The
greater the entropy of the right constituent of a com-
pound, they found, the longer the acoustic duration of
the interfix in that compound.

Recently, Schmidtke, Kuperman, Gagné, and Spald-
ing (2016) looked into the role of entropy on compound
processing in English. Rather than defining entropy over
form-level probabilities, Schmidtke et al. (2016) calcu-
lated the entropy over the probabilities of structural re-
lationships between the modifier and the head of a com-

pound (e.g.; “MADE OF”, “CAUSED BY”, …). The
higher this entropy, the authors found, the longer the
response time in a lexical decision experiment. Greater
uncertainty about the relational structure of a com-
pound thus corresponds to additional processing costs.

The effects of entropy reported by Schmidtke et al.
(2016) are opposite in nature to the effects of entropy
reported by Bien et al. (2005). A number of poten-
tial explanations for this discrepancy exist. First, the
diverging results could be due to the fact that the en-
tropy was calculated over different structures in both
studies. The entropy measures in (Bien et al., 2005)
were defined at the form level, whereas Schmidtke et al.
(2016) calculated entropy over the conceptual relations
in a compound. Furthermore, the former study calcu-
lated entropies at the constituent level, whereas the lat-
ter defined entropy for compounds as a whole. Both
studies may therefore tap into different aspects of the
combinatorial properties of constituents in compounds.

Second, the different effects of entropy in both studies
could be task-related. Bien et al. (2005) investigated
the role of entropy on language processing in a task
that gauges aspects of language production. By con-
trast, Schmidtke et al. (2016) adopted the lexical deci-
sion paradigm, which taps into processes that play a role
in language comprehension. The qualitatively different
effects of entropy in both studies could therefore arise
due to the different demands the tasks in these studies
impose on the language processing system. A third pos-
sibility is that the way in which information-theoretic
measures manifest themselves in behavioral data de-
pends on the distributional structure of the language
under investigation. Differences may exist between the
distributional space for compound words in English and
Dutch, which could lead differences in how compounds
are processed in both languages.

As noted above, entropy gauges the amount of un-
certainty in the signal. Uncertainty is inversely pro-
portional to information (which can, indeed, be concep-
tualised as uncertainty reduction). Conditional proba-
bilities and association measures quantify the amount
of information in the signal. Kuperman, Bertram, and
Baayen (2008) argued that the conditional probability



IT IN COMPOUND WORDS 3

of the right constituent of a compound given the left
constituent (i.e., the probability of “stardust” given the
fact that the left constituent of the compound is “star”
(P(stardust | star ) = 0.080) plays an important role in
compound processing. The relevance of association mea-
sures for compound processing has, to our knowledge,
not previously been examined. The association measure
mutual information, which compares the frequency of
two linguistic elements occurring together to the fre-
quency both elements occurring in isolation, however,
has been shown to influence acoustic durations at both
the word level (Pluymaekers, Ernestus, & Baayen, 2005)
and the segment level (Kuperman, Ernestus, & Baayen,
2008).

The effects of information-theoretic measures on com-
pound processing indicate that the language processing
system is sensitive to the combinatorial properties of
the constituents in compound words. As noted above,
however, questions remain about the exact manner in
which paradigmatic relations in compound words influ-
ence that way in which we perceive and produce these
morphologically complex words. Do the effects of en-
tropy for Dutch compound in a response-association
task reported by Bien et al. (2005) generalize to the word
naming task? Is the influence of information-theoretic
measures on compound processing limited to the effect
of entropy or do other measures, such as mutual infor-
mation have an effect on behavioral measures of com-
pound processing as well? Are the effects of information-
theoretic measures a general property of linguistic pro-
cessing across languages, or do the effects of these mea-
sures depend on the structure and the distributional
properties of a language?

Below, we seek to gain more insight into these issues
through an investigation of the effects of a number of
information-theoretic measures on compound processing
in the reading aloud task in English and Mandarin Chi-
nese. In English, compound words are a relatively rare
phenomenon. Of all 79, 686 words in the elp, 3, 501
words are compound words, for a type percentage of
4.39%. The token percentage of compounds is even
lower. The contribution of compound words to the total
token count of words that are in the elp in subtlex-

uk is no more than 1.29%, which indicates that com-
pound words tend to be relatively low frequency words.
It should be noted that the elp does not include com-
pounds in which the constituents are separated by a
hyphen or a space. The true rate of occurrence of
compound words is therefore higher than the estimates
provided here. Nonetheless, it is clear that compound
words constitute a minority among lexical items in En-
glish.

Mandarin Chinese is a tonal language. The basic

phonological unit is the syllable. A syllable consists
of vowels and consonants in a (C)V(C) structure at
the segmental level and a tone at the suprasegmen-
tal level (C. Sun, 2006). In writing, syllables are ex-
pressed through characters. Recent estimates indicate
that there are about 8, 100 Chinese characters, of which
6, 500 are commonly used (Ministry of Education of the
People’s Republic of China, 2013). Honorof and Feld-
man (2006) estimated that about a third of the word
tokens in Mandarin Chinese are mono-syllabic and con-
sist of a single character. An overwhelming majority of
the remaining two thirds of word tokens in Chinese are
di-syllabic words that consist of two characters.

The majority of two-character words in Mandarin
Chinese are compound words, although affixation is
a productive process for two-character words in Man-
darin Chinese as well (Myers, 2006). Morphemes tend
to appear in multiple compound words, in which they
form various functional relations with other constituent
morphemes (Zhou & Marslen-Wilson, 1995). As is the
case in English, the right constituent is the head of the
compound, whereas the left constituent is the modi-
fier. The word for “classroom” in Mandarin Chinese,
for instance, is “教室”. The left constituent “教” means
teach, whereas the right constituent “室” means room
(example adopted from X. Chen, Hao, Geva, Zhu, &
Shu, 2009).

The role of compound words, however, is much more
prominent in Mandarin Chinese than in English. Com-
pounding is the most productive word formation pro-
cess in Mandarin Chinese. Furthermore, compounds
are much more frequent in Mandarin Chinese than in
English. Of all 48, 644 words in the Chinese Lexical
Database (henceforth cld; C. C. Sun, Hendrix, Ma,
& Baayen, 2018), 34, 233 words are di-syllabic two-
character words, for a type percentage of 70.37%. As
noted above, most of these two-character words are com-
pounds words, although exceptions do exist. Together,
the 34, 233 two-character words in the cld account for
36.85% of the word tokens in the corpora underlying the
frequency counts in the cld. Due to the central posi-
tion of compound words in Mandarin Chinese, speakers
of this language have much more experience with com-
pound words as compared to speakers of English. One
of the questions we seek to answer in the current work
is to what extent differences in exposure to compound
words influence the way in which speakers process these
words.

In what follows, we provide two analyses of the word
naming latencies for compound words in Mandarin Chi-
nese and English. First, we report the results of an anal-
ysis using a statistical technique that is embedded in the
tradition of time-to-event analysis: the piece-wise expo-
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nential additive mixed model (henceforth pamm Bender
& Scheipl, 2018; Bender, Groll, & Scheipl, 2018; Bender,
Scheipl, Hartl, Day, & Küchenhoff, 2018). Like stan-
dard regression models, pamms estimate the effect of
one or more predictors on a response variable. Whereas
the response variable in a standard regression model of
naming latencies is the end-point of processing, however,
pamms estimate the probability of an instantaneous re-
sponse as it develops over time. As a result, pamms
provide information about the temporal dynamics of
predictor effects that is not available through standard
regression models. The aim of the pamm analysis is to
establish whether or not information-theoretic measures
influence compound processing in the word naming task
in English and Mandarin Chinese, and to determine to
what extent the qualitative nature and the temporal de-
velopment of the effects of these predictors differs be-
tween both languages. The pamm analysis of the data
thus focuses on the influence of information-theoretic
properties of compounds on language processing.

The second analysis uses the causal additive model
(henceforth cam; Peters, Mooij, Janzing, & Schölkopf,
2014) to gain more insight into lexical-distributional
space in Mandarin Chinese and English. The causal ad-
ditive model falls under the statistical umbrella of causal
inference models, and seeks to establish causal connec-
tions between lexical-distributional variables. The cam

analysis focuses on the position of information-theoretic
properties of compound words in distributional space in
English and Mandarin Chinese. How do information-
theoretic measures relate to other lexical-distributional
properties of compound words, such as visual complex-
ity or frequency? Are there systematic relations between
lexical-distributional properties of words? Do these re-
lationships exist across languages, or are they language-
specific? The cam analysis of the word naming data
in Mandarin Chinese and English promises to provide
more insight into the answers to these questions.

Chinese

Methods

Participants. Three participants took part in the
experiment: two females and one male. All three par-
ticipants were native speakers of Mandarin Chinese and
had normal or corrected-to-normal vision. The average
age of the participants was 34.

Materials. We created a list of one-character and
two-character words that were present in the subtlex-

ch word frequency list (Cai & Brysbaert, 2010) as well
as in the Contemporary Chinese Dictionary (Xiandai
Hanyu Cidian, Chinese Academy of Social Sciences,
2012) and for which both characters appeared in the

Chinese Character Dictionary that is available online
at http://www.mandarintools.com/chardict.html

(Peterson, 2005). We excluded two-character words
that are a repetition of the same character, proper
nouns, and Japanese Kanji (Hanzi). This resulted in a
stimulus set of 4, 710 one-character words and 25, 935
two-character words, for a total of 30, 645 words. The
experiment consisted of 31 experiment lists. The first
30 lists consisted of 1, 000 trials, whereas the last list
consisted of 645 trials. Here, we focus on the naming
latencies for the 25, 935 two-character words.

Design. The response variable in our analysis of
the naming latencies is the temporal onset of the pro-
nunciation of each word. Across the three participants,
the total number of trials for two-character words is
3∗ 25, 935 = 77, 805. Prior to analysis, we removed incor-
rect responses from the data. This led to the exclusion
of 4, 420 data points (5.68%). After outlier removal,
the data set thus consisted of 73, 385 response times.
We investigated the effect of a number of predictors on
the naming latencies. The lexical information for the
predictors under investigation was extracted from the
Chinese Lexical Database.

First, we added the initial phoneme (Initial Phoneme)
of the word as a control variable in our analyses. We
furthermore included three frequency measures: the fre-
quency of the word as a whole, the frequency of the first
character, and the frequency of the second character.
The frequency counts in the cld are based on combined
frequencies in subtlex-ch (Cai & Brysbaert, 2010) and
the Leiden Weibo Corpus (henceforth lwc; Van Esch
(2012)). subtlex-ch is 33.5 million word corpus of
film subtitles, whereas the lwc is a corpus of messages
posted on the social medium Sina Weibo that consists
of 101.4 million words. Prior to analysis, a logarithmic
transform was applied to all frequency accounts to re-
move a rightward skew from the frequency distributions.
Henceforth, we therefore refer to the three frequency
measures as (log) Frequency, (log) C1 Frequency, and
(log) C2 Frequency.

In addition, two measures of visual complexity were
entered into the model. These measures of visual com-
plexity encode the number of strokes in the first and
second character. A stroke refers to a line that is
written continuously without a pause. As noted by
Zheng (1983) (see also Perfetti & Tan, 1999), 24 dif-
ferent strokes exist in the Chinese writing system. The
greater the number of strokes a character consists of,
the greater the visual complexity of that character. To
reduce asymmetry in the stroke counts distributions, we
applied square root transforms to the stroke counts prior
to analysis. We thus refer to these measures of visual
complexity as (sqrt) C1 Strokes and (sqrt) C2 Strokes.
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The effect of (sqrt) C2 Strokes, however, did not reach
significance and is hence omitted from the description
of the results of our analysis.

Our primary interest for the current purposes, how-
ever, is in information-theoretic measures. Two types
of information-theoretic measures were entered into the
model: entropy and mutual information. For a given
two-character word, C1 Entropy entropy is defined as
the entropy over the probabilities of all two-character
that share the first character with the target word.
Analogously, C2 Entropy is the entropy over the proba-
bilities of all two-character words that share the second
character with the target word.

The word 苹果 (“apple”), for instance, is the only
two-character word in the cld that starts with the char-
acter 苹. As a result, there is no uncertainty about the
second character when we know that the first character
of a two-character word is苹. Hence, C1 Entropy for the
word苹果 (“apple”) is 0. By contrast, there are 32 two-
character words in the cld that end with the character
果, including 9 words with a frequency greater than 10
per million words. Substantial uncertainty about the
identity of the first character thus remains when we
know that the second character of a two-character word
is “果”. Consequently, C1 Backward Entropy is higher
than C1 Entropy the word苹果 (“apple”): 1.89. Prior to
analysis, we applied square root transformations to the
entropy measures to reduce asymmetry in their distribu-
tions. Henceforth, we therefore refer to these measures
as (sqrt) C1 Entropy and (sqrt) C2 Entropy.

Pointwise mutual information (henceforth pmi) is a
measure of the strength of the association between both
characters in a two-character word. pmi compares the
observed frequency of a two-character words to its ex-
pected frequency (c.f., Gries, 2010). The expected fre-
quency is defined as:

∑ O
j=1 fi ∗

∑ P
k=1 f j

∑ N
i=1 fi

(2)

where N is the set of two-character words in the lex-
icon, O and P are the sets of two-character words that
share the first and second character with the target
word, and fi is the frequency of word i.

For example, the observed frequency per million for
the word 苹果 (“apple”) is 107.66. The pmi mea-
sure used here is position-specific. The expected fre-
quency of the word 苹果 (“apple”) therefore depends
on the summed frequency of all two-character words
(334227.90), the summed frequency of all two-character
words that start with the character苹 (107.66; only the
word 苹果 (“apple”) itself), and the summed frequency
of all two-character words that end with the character

果 (1788.38; 32 words). The expected frequency for the
word 苹果 (“apple”) thus is 107.66∗ 1788.38

334227.90 = 0.57.
pmi is defined as the logged ratio of the observed and

expected frequency of a word:

log2

(
observed frequency

expected frequency

)
(3)

.
As such, the value of the predictor PMI for the word

苹果 (“apple”) is log2

(
107.66
0.57

)
= 7.56. No transforma-

tion was applied to PMI prior to analysis.
Readers may ask themselves why we opted to use en-

tropy measures rather than measures of the morpholog-
ical family size of a compound’s constituents. Morpho-
logical family size is the type count of the number of
compounds that share either the left (C1 Family Size)
or the right (C2 Family Size) constituent with the target
word. Similar to the entropy measures described above,
morphological family size is a measure of the combi-
natorial properties of constituents in compounds. Sev-
eral studies revealed that greater morphological families
correspond to shorter response latencies in a variety of
tasks, including lexical decision and word naming (see,
e.g., Juhasz & Berkowitz, 2011; De Jong, Schreuder,
& Baayen, 2000). Consistent with these findings, fa-
cilitatory effects of morphological family size have been
observed for Mandarin Chinese as well, both in word
naming (Y. Liu, Shu, & Li, 2007) and in lexical deci-
sion (Tsai, Lee, Lin, Tzeng, & Hung, 2006). Effects
of the summed frequency of all members of a family,
the morphological family frequency, have been reported
for compound processing as well, both in alphabetical
languages (De Jong, Feldman, Schreuder, Pastizzo, &
Baayen, 2002) and in Mandarin Chinese (Huang et al.,
2006).

The raw correlations of family size and family fre-
quency with the observed naming latencies ((log) C1
Family Size: r = −0.208, (log) C2 Family Size: r =
−0.133, (log) C1 Family Frequency: r = −0.225, (log)
C2 Family Frequency: r = −0.150) are higher than the
raw correlations of entropy with the observed naming la-
tencies ((sqrt) C1 Entropy: −0.161, (sqrt) C2 Entropy:
r = −0.108). This is, however, due to the increased
correlations of these measures with the corresponding
character frequencies ((log) C1 Family Size: r = 0.869,
(log) C2 Family Size: r = 0.859, (log) C1 Family Fre-
quency: 0.961, (log) C2 Family Frequency: r = 0.962),
as compared to the entropy measures ((sqrt) C1 En-
tropy: r = 0.583, (sqrt) C2 Entropy: r = 0.613). In-
deed, once character frequencies are taken into account,
the effects of the entropy measures ((sqrt) C1 Entropy:
t = −14.286, (sqrt) C2 Entropy: t = −10.081) in a linear
regression model are more prominent than the effects
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Table 2
Distributional statistics for the predictors (log) Frequency, (log) C1 Frequency, (log) C2 Frequency, (sqrt) C1 Strokes,
(sqrt) C1 Entropy, (sqrt) C2 Entropy, and PMI. For each predictor, we provide the original range and the adjusted
range after outlier removal, as well as the mean, the median and standard deviation after outlier removal.

predictor range adj. range mean median sd

(log) Frequency -4.21-8.38 -4.21-7.14 0.18 0.12 1.96
(log) C1 Frequency -3.92-10.39 -3.92-8.62 5.40 5.58 1.74
(log) C2 Frequency -4.62-10.39 -4.62-8.51 5.48 5.71 1.68
(sqrt) C1 Strokes 1.00-5.00 1.00-4.24 2.83 2.83 0.56
(sqrt) C1 Entropy 0.00-2.31 0.00-2.31 1.53 1.62 0.45
(sqrt) C2 Entropy 0.00-2.51 0.00-2.51 1.58 1.64 0.48
PMI -8.51-24.43 -7.10-18.09 5.46 5.45 4.14

of family size ((log) C1 Family Size: t = −11.469, (log)
C2 Family Size: t = −9.059) and family frequency ((log)
C1 Family Frequency: t = −4.459, (log) C2 Family Fre-
quency: t = −4.250). For the current data, the entropy
measures described above thus provided more explana-
tory power than do measures of the family size or family
frequency of a compound’s constituents.

Prior to the pamm analysis we removed predictor out-
liers further than 3 standard deviations from the predic-
tor mean from the data. This resulted in the exclusion of
0.05% of the data (38 observations) for (log) Frequency,
1.70% of the data (1, 247 observations) for (log) C1 Fre-
quency, 1.79% of the data (1, 311 observations) for (log)
C2 Frequency, 0.56% of the data (411 observations) for
(sqrt) C1 Strokes, and 0.30% of the data (218 observa-
tions) for PMI. No outliers further than 3 standard de-
viations from the predictor mean were present for (sqrt)
C1 Entropy and (sqrt) C2 Entropy. Table 2 presents the
distributional statistics for the predictors that entered
the analysis. Provided are original ranges and ranges
after outlier removal, as well as means, median, and
standard deviations of all predictors. The exclusion of
predictor outliers reduced the data set by 3, 124 data
points (4.26% of the data). The data set for the pamm

analysis thus consisted of 70, 261 data points.

Procedure. The experiment took place in a sound-
proof booth. Participants were instructed to respond
as fast as possible, while retaining accuracy. Prior to
each trial a fixation mark was shown in the center of
the screen. Next, a word was presented in the center of
the screen in black SimHei 80 point font. The word re-
mained on the screen for 2, 000 milliseconds. After each
stimulus, a blank screen appeared for 750 ms, followed
by the fixation mark for the next trial. A 10 minute
break was inserted halfway through each experimen-
tal session. Naming latencies were extracted from the
recorded speech signal through custom computer code
on the basis of volume thresholds. The performance
of this code was inspected on a trial-by-trial basis and
corrected manually where necessary.

PAMM analysis

For the analysis of the word naming latencies in Man-
darin Chinese we use a piece-wise exponential additive
mixed model (pamm Bender & Scheipl, 2018; Bender,
Groll, & Scheipl, 2018; Bender, Scheipl, et al., 2018).
The pamm is a statistical technique for time-to-event
analysis (which is referred to as survival analysis as
well). Time-to-event analyses model the time until
an event of interest occurs. The event of interest in
the word naming task is the onset of the pronuncia-
tion, which corresponds to the naming latency. The
primary advantage of time-to-event analysis over tra-
ditional analysis techniques for response time data is
that predictor effects may be modelled as a function of
time, even though the response time itself measures the
end-point of processing only. Unlike traditional analysis
techniques, time-to-event analysis thus provides insight
into the temporal dynamics of lexical processing. Below,
we introduce the main concepts behind the pamm. For a
more comprehensive introduction to the use of pamms in
response time studies, we refer the interested reader to
Hendrix (2019). A formal introduction to the pamm and
its statistical properties is provided in Bender, Groll,
and Scheipl (2018). Bender and Scheipl (2018) provide
useful practical examples of the application of pamms
for data sets with different types of predictors.

Whereas traditional regression analyses model the re-
sponse time itself, the pamm models the probability of
a response as it develops over time. More precisely, the
pamm models the hazard function λ(t), which describes
the instantaneous probability of a response at time t,
provided that no response was registered prior to time
t:

λ(t) = l im
dt→0

P(t ≤ T ≤ t + d | T ≥ t)

dt
(4)

where T is the response time.
As noted above, we collected word naming data for

three participants. Whereas the standard deviation of
the response time distribution was similar across the
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three participants (range: 93.02 - 107.91), the median
response time differed substantially between the partic-
ipants. The median response time for the fastest partic-
ipant was 488.30 ms, whereas the median response time
for the slowest participant was 640.09 ms. When fit to
the raw response times, the hazard function would thus
be dominated by responses of the fastest participant for
low values of t and by responses of the slowest partici-
pant for high values of t. To prevent this, we shifted the
response times distributions for each participant. The
median response time of the shifted response time dis-
tributions for each participant is identical to the median
response time in the full data set: 514.51 ms.

The (log) hazard function for the shifted word naming
data as modelled through a pamm is presented in Fig-
ure 1. The instantaneous probability of a response (i.e.,
the onset of the pronunciation) rapidly increases be-
tween 370 and 500 ms after stimulus onset. After that,
the (log) hazard rate remains relatively stable through-
out the remainder of the response time window. The
shape of the hazard function observed here is typical for
response time distributions in psycholinguistic experi-
ments (cf. Hendrix, 2018, 2019).

We limited the response time window from 370 ms to
1, 000 ms after stimulus onset. This response time win-
dow contains 99.16% of the responses. It is important
to note, however, that response times shorter than 370
ms or longer than 1, 000 ms remain part of the analysis.
The exact response times for these words are unknown
to the model. The model does know, however, that these
stimuli were responded to before 370 ms after stimulus
onset and after 1, 000 ms after stimulus onset, respec-
tively. Valuable information about the stimuli that were
particularly easy or hard to respond to thus remains
available to the model.

The overall hazard function for the data is referred to
as the baseline hazard. The baseline hazard itself often

400 600 800 1000
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Figure 1. Log-transformed instantaneous hazard func-
tion ( f (t)) with point-wise confidence intervals for Man-
darin Chinese.

is of little interest. Here, too, our primary interest is
in how the values of predictors modulate the shape of
the hazard function. The pamm is an extremely flexible
framework that allows for the modeling of such mod-
ulations. As a semi-parametric extension of the gen-
eralized additive mixed model (gamm; S. Wood, 2011;
S. N. Wood, 2017), it inherits the ability of the gamm

to model non-linear effects in multiple dimensions. The
pamm is therefore able to model non-linear predictor
effects that evolve in a non-linear fashion as a function
of time.

The pamm models the hazard function in a piece-
wise fashion for each of a number of intervals in the
time dimension. Following Hendrix (2019), we split the
response time window into 51 intervals that are evenly
spread out across the quantiles of the response time dis-
tribution. The (log) hazard function λ(t|Xi ) for all time
points t in the interval j := (κj−1,κ j ] given the predictor
values Xi for stimulus i is defined as:

log(λ(t|Xi )) = log λ0(t j )+
p∑

k=1

fk(xi,k, t j )+bℓ i , ∀ t ∈ (κj−1,κ j ].

(5)
where λ0(t j ) is the baseline hazard for time interval j,

fk(xi,k, t j ) are smooth functions for predictor k ∈ 1,..., p
for each time point t in the interval j, and bℓ i are random
intercepts associated with group ℓ ∈ 1,..., L to which
stimulus i belongs.

The smooth functions fk(xi,k, t j ) allow the pamm to
model non-linear predictor effects, whereas the piece-
wise nature of the fitting process enables the pamm to
model non-linearities in the time dimension. In a prac-
tical sense, non-linear predictor effects that evolve in
a non-linear fashion over time can be modelled through
tensor product interactions (cf. S. Wood, 2011) between
time and the predictor in question. Despite the fact such
effects are modelled through (two-dimensional) smooth
functions, however, the estimates of the pamm remain
piece-wise constant in the time dimension.

We fitted a pamm for the word naming latencies with
the mgcv package for r (S. Wood, 2011; S. N. Wood,
2017). The pamm models the instantaneous probability
of a response as a function of time and the predictors
Initial Phoneme, (log) Frequency, (log) C1 Frequency,
(log) C2 Frequency, (sqrt) C1 Strokes, (sqrt) C1 En-
tropy, (sqrt) C2 Entropy, and PMI. The baseline haz-
ard in Figure 1 and time-constant predictor effects were
estimated by smooth terms. Time-varying predictor ef-
fects were estimated by tensor product interactions, as
modelled through ti() terms (see S. N. Wood, 2017, for
more details).

No restrictions were imposed on the main effect
smooth for time that models the baseline hazard. In the
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interest of interpretability of the results, however, we
limited predictor smooths as well as time by predictor
tensor product terms to fourth order non-linearities. We
did not add a random effect of participant to the model,
because the participant-specific hazard functions were
nearly identical after the participant-specific shifting of
the response time distributions mentioned above.

Medium-strength correlations exist between the pre-
dictors under investigation, as indicated by a relatively
high condition number of κ = 40.581 (Belsley, Kuh, &
Welsch, 1980). We therefore fit separate pamms with
a main effect smooth for time, a main effect smooth of
the predictor and a tensor product interaction between
time and the predictor for each of the predictor under
investigation. The predictor effects in these pamms were
highly similar to the predictor effects in the full model,
which indicates that the influence of collinearity on the
results reported below was modest.

PAMM results

The results for the pamm fit to the word naming data
in Mandarin Chinese are presented in Table 3. The
baseline hazard of the model differs significantly from
zero, as indicated by a significant model intercept (β =
-116.850, p < 0.000), as well as a significant main effect
smooth of time (χ2 = 4259.878, p < 0.000). The baseline
hazard of the pamm was presented in Figure 1 above.
As noted above, the baseline hazard increases rapidly
from 370 to 500 ms after stimulus onset, after which
it stabilises until the end of the analysis window. We
furthermore observed a significant effect of the control
variable Initial Phoneme (χ2 = 2668.634, p < 0.000).

The baseline hazard is modified by the frequency of
a word. The main effect of (log) Frequency is signifi-
cant (χ2 = 1420.041, p < 0.000), as is the time by (log)
Frequency interaction (χ2 = 151.713, p < 0.000). The
partial main effect of (log) Frequency is presented in
Figure 2. The y-axis in Figure 2 shows adjustments
to the baseline hazard as a function of (log) Frequency.
This adjustment is negative for low frequency words and
positive for high frequency words. The main effect of
(log) Frequency thus suggests that the instantaneous
probability of a response is higher for high frequency
words as compared to low frequency words throughout
the analysis window.

The main effect of (log) Frequency, however, is mod-
ulated by the interaction between time and (log) Fre-
quency. Figure 3 visualizes the partial interaction be-
tween time and (log) Frequency. The time after stimulus
onset is on the x-axis of Figure 3, whereas the (log of
the) frequency of the word is on the y-axis. The color
coding represents the adjustment to the baseline haz-
ard, with warmer colors representing positive adjust-

Table 3
Results of the piece-wise exponential additive mixed
model (pamm) fit to the naming latencies. For paramet-
ric terms, β estimates, standard errors of the β estimates
and p-values are shown. For smooth terms, estimated
degrees of freedom, χ2 values and p-values are provided.

parametric terms β S.E. P

Intercept -5.145 0.044 < 0.001
smooth terms edf χ2 P

time 8.989 4259.878 < 0.001
InitialPhoneme 28.484 2668.634 < 0.001
(log) Frequency 2.826 1420.041 < 0.001
time by (log) Frequency 5.172 151.713 < 0.001
(log) C1 Frequency 2.938 363.610 < 0.001
time by (log) C1 Freq. 6.840 491.981 < 0.001
(log) C2 Frequency 2.663 50.689 < 0.001
time by (log) C2 Freq. 5.378 46.355 < 0.001
(sqrt) C1 Strokes 2.548 122.055 < 0.001
time by (sqrt) C1 Strokes 5.072 103.522 < 0.001
C1 Entropy 2.658 177.937 < 0.001
time by C1 Entropy 7.364 122.079 < 0.001
C2 Entropy 2.822 142.892 < 0.001
time by C2 Entropy 2.294 38.307 < 0.001
PMI 1.010 328.546 < 0.001
time by PMI 3.349 42.242 < 0.001

ments and colder colors representing negative adjust-
ments. Faded areas correspond to points in time where
the interaction between time and (log) Frequency did
not reach significance (i.e., points in time where 0 was in
the confidence interval for all predictor values). White
areas indicates the absence of responses at a certain
point in time. From 370 to 500 ms after stimulus onset,
hazard rates are significantly higher for high frequency
words. During later stages of the response window, how-
ever, the nature of the effect reverses, with a lower in-
stantaneous probability of a response for high frequency
words as compared to low frequency words.
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Figure 2. Partial main effect of (log) Frequency for Man-
darin Chinese.
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Figure 3. Partial interaction of time and (log) Frequency
for Mandarin Chinese. Warmer colors indicate higher
(log) hazard rates.

The full adjustment to the baseline hazard as a func-
tion of word frequency is obtained by adding up the
partial main effect of (log) Frequency and the partial
interaction between time and (log) Frequency. The full
effect of (log) Frequency is presented in Figure 4. The
effect of (log) Frequency is most prominent during the
early stages of the response window, with increased haz-
ard rates for high frequency words. The size of the ef-
fect of (log) Frequency decreases as a function of time,
and the effect is no longer significant at 941 ms after
stimulus onset. The probability of an instantaneous re-
sponse, therefore, is higher for high frequency words as
compared to low frequency words, particularly during
the early stages of the response window. The effect of
word frequency reported here fits well with the results
of previous studies, in which the facilitatory effect of
word frequency was solidly established in both lexical
decision (Lee, Hsu, Chang, Chen, & Chao, 2015; Sze,
Rickard Liow, & Yap, 2014; Zhang & Peng, 1992; Peng,
Liu, & Wang, 1999) and word naming (Seidenberg, 1985;
Y. Liu et al., 2007; I. M. Liu, 1999).
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Figure 4. Effect of (log) Frequency for Mandarin Chi-
nese. Warmer colors indicate higher (log) hazard rates.

Not only the frequency of words as whole influences
behavioral measures of lexical processing. Effects of the
frequency of the characters within words have been re-
ported as well. Zhang and Peng (1992), Taft, Huang,
and Zhu (1994), and Peng et al. (1999) all reported fa-
cilitatory effects of character frequency in lexical deci-
sion. Yan, Tian, Bai, and Rayner (2006) observed a
character frequency effect on eye fixation durations on
two-character words. (Kuo et al., 2003) and Lee et al.
(2004) found character frequency effects in fMRI stud-
ies. Studies that failed to observe character frequency
effects, however, exist as well. Janssen, Bi, and Cara-
mazza (2008) did not find constituent frequency effects
in a picture naming task in both English and Man-
darin Chinese, whereas T. M. Chen and Chen (2006)
reported the absence of constituent frequency effects in
a response-association task.

For the word naming data under investigation here,
we observed a significant main effect of (log) C1 Fre-
quency (χ2 = 363.610, p < 0.000), as well as a significant
time by (log) C1 Frequency interaction (χ2 = 491.981,
p < 0.000). The effect of C1 Frequency is presented
in Figure 5. As was the case (log) Word Frequency,
the effect of (log) C1 Frequency is most prominent in
the early stages of the response window, although it is
significant throughout the response window (i.e., from
370 to 1000 ms after stimulus onset). Consistent with
the facilitatory effects of character frequency reported
in the literature, hazard rates are higher for words with
more frequent first characters.

The pamm analysis revealed an effect of the frequency
of the second character as well, with a significant main
effect of (log) C2 Frequency (χ2 = 50.689, p < 0.000) and
a significant interaction of time and (log) C2 Frequency
(χ2 = 46.355, p < 0.000). Hazard rates are significantly
higher for words with frequent second characters from
370 to 764 ms after stimulus onset. The effect of the
frequency of the second character thus is more transient
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Figure 5. Effect of (log) C1 Frequency for Mandarin
Chinese.
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Figure 6. Effect of (log) C2 Frequency for Mandarin
Chinese.

than the effect of the frequency of the first character.
As can be seen in Figure 6, the effect size of the effect
of (log) C2 Frequency is considerably smaller than the
effect size of (log) C1 Frequency. This reflects the in-
creased prominence of the first character as compared
to the second character as a result of the left-to-right
uptake of information in reading.

The visual complexity of a word influences the in-
stantaneous probability of a response as well. As noted
above, however, the effect of visual complexity is lim-
ited to an effect of the number of strokes in the first
character. As can be seen in Table 3, both the main
effect of (sqrt) C1 Strokes (χ2 = 122.055, p < 0.000)
and the interaction between time by (sqrt) C1 Strokes
(χ2 = 103.522, p < 0.000) reached significance. The ad-
justment to the baseline hazard as a function of (sqrt)
C1 Strokes is presented in Figure 7. Hazard rates are
higher for words with fewer strokes from 370 to 569 ms
after stimulus onset. When a word was not responded
to at 569 ms after stimulus onset, the visual complexity
of the first character thus no longer has a significant
influence on the decision making process. The effect of
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Figure 7 . Effect of (sqrt) C1 Strokes for Mandarin Chi-
nese.
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Figure 8. Effect of (sqrt) C1 Entropy for Mandarin Chi-
nese.

(sqrt) C1 Strokes reported here is in line with the in-
hibitory effects of stroke counts in both lexical decision
(Lee et al., 2015) and word naming (Y. Liu et al., 2007;
Leong, Cheng, & Mulcahy, 1987) that were reported in
previous studies.

The focus of the current study is on the effects of the
information-theoretic measures entropy and pmi. The
pamm analysis revealed significant main effects and sig-
nificant interactions with time for the entropy of both
the first ((sqrt) C1 Entropy: χ2 = 177.937, p < 0.000,
time by (sqrt) C1 Entropy: χ2 = 122.079, p < 0.000) and
the second character ((sqrt) C2 Entropy: χ2 = 142.892,
p < 0.000, time by (sqrt) C2 Entropy: χ2 = 38.307, p
< 0.000).

The effects of (sqrt) C1 Entropy and C2 Entropy are
presented in Figure 8 and Figure 9. As can be seen in
Figure 8, the effect of (sqrt) C1 Entropy is significant
from 370 to 804 ms after stimulus onset. The effect is
most prominent during the early stages of the response
time window, with a higher instantaneous probability of
a response for high values of (sqrt) C1 Entropy. Figure 9
indicates that the effect of (sqrt) C2 Entropy is quali-
tative similar, with higher hazard rates for high values
of (sqrt) C2 Entropy. The effect of (sqrt) C2 Entropy,
however, reaches significance from 370 to 588 ms after
stimulus onset only. Furthermore, the effect size of the
effect of (sqrt) C2 Entropy is smaller than the effect size
of the effect of (sqrt) C1 Entropy. As was the case for
the effects of character frequency, the effect of entropy
thus is more pronounced for the first character than for
the second character.

Despite the structural differences between Dutch and
Mandarin Chinese, the effects of entropy observed here
are similar to the effects of entropy reported by Bien
et al. (2005) for compound processing in Dutch in a
position-response association task. Consistent with the
current findings, the authors of this study found that
higher constituent-level entropies resulted in shorter



IT IN COMPOUND WORDS 11

400 600 800 1000

0.
0

1.
0

2.
0

t ime (ms)

(s
q

rt
) 

C
2 

E
n

tr
op

y

 − 0.1 

 0 

 0 

 0 

 0 

 0 
 0.1 

 0
.2

 

Figure 9. Effect of (sqrt) C2 Entropy for Mandarin Chi-
nese.

naming latencies. Both studies thus revealed a pro-
cessing advantage for compounds that consist of con-
stituents that occur in a higher number of compounds
with more similar frequencies. This suggests that the
additional experience for characters that occur in a large
number of two-character compound words leads to a
processing advantage.

The second type of information-theoretic measure un-
der investigation is PMI : a measure of the association
between the characters in a compound. As was the case
for the effects of the entropy of both constituent, both
the main effect of PMI (χ2 = 328.546, p < 0.000) and
the time by PMI interaction (χ2 = 42.242, p < 0.000)
were highly significant. The effect of PMI is presented in
Figure 10. The instantaneous probability of a response
is higher for lower values of PMI. The effect of PMI is
less transient than the effects of entropy and remains
significant throughout the analysis window.

The effect of PMI indicates that a stronger associa-
tion between the characters in a two-character words re-
sults in additional processing difficulties. At first glance,
this may seem surprising. One might expect a process-
ing advantage for two-character compound words that
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Figure 10. Effect of PMI for Mandarin Chinese.

consist of characters that nearly always occur together.
Given one character in these words, little uncertainty
remains about the other character. On the other hand,
however, readers have more experience with characters
that occur in a larger number of two-character words.
This increased experience might make words that con-
tains such character easier to process. Furthermore,
there may be lexical-distributional differences between
two-character words with high and low values of PMI
that help better understand the inhibitory effect of PMI.
In the next section, we explore the lexical-distributional
space for Mandarin Chinese compound words in more
detail through a cam analysis of the word naming data.

CAM analysis

We investigated lexical-distributional space for com-
pound words in Mandarin Chinese using a causal infer-
ence model. Causal inference models attempt to infer
causal relations between predictors. The causal struc-
ture in a causal inference model is often visually repre-
sented through a graph. A graph consists a series of ver-
texes connected by edges. The edges in a causal graph
are directed. A directed edge from vertex i to vertex
j indicates a causal relationship between the predictors
associated with the vertices i and j, with changes in
the predictor associated with i causing changes in the
predictor associated with j. In this case, we refer to
vertex i as a parent, and to vertex j as a child. When
two vertices v and w in a graph are not connected by an
edge, the predictors associated with these vertices are
conditionally independent. Two predictors I and J are
conditionally independent given a third predictor K if
given the value of K , the value of I provides no further
information about the value of J (see Lauritzen, 1996).
Furthermore, graphs in causal inference models tend to
be acyclic. In an acyclic graph there is no path from a
vertex v through directed edges that leads back to v. A
graph with the properties of directionality and acyclicity
is referred to as a directed acyclic graphs (dag).

Finding causal structure in a data set is far from triv-
ial. A first problem is identifiability. The information
fed into a causal inference model consists of a measure of
association between variables, such as a correlation ma-
trix. As years of cautionary tales in statistical lectures
have taught us, however, correlation does not imply cau-
sation. The identifiability problem refers to the problem
of separating association between variables from causal
relationships between variables. A second problem is
that the search space increases super-exponentially with
the number of predictors (Peters et al., 2014). Even for
data sets with a relatively small number of predictors,
an exhaustive search of all possible causal structures is
therefore often not feasible.
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The causal inference model used here is the causal ad-
ditive model (cam; Bühlmann, Peters, & Ernest, 2014).
The cam alleviates the computational burden imposed
by the size of the search space by decoupling the order
search for predictors from the selection of vertices and
edges in a dag. For low-to-medium dimensional data
such as the data for the lexical-distributional properties
of Mandarin Chinese under investigation here, fitting a
causal additive model consists of two steps.

First, the order of the predictors is determined
through non-regularized maximum likelihood estima-
tion for an exhaustive set of generalized additive models
(gams; S. Wood, 2006, 2011) that regress one variable
on another (i.e., for the set of possible edges in a causal
graph of the data). At each iteration of the algorithm,
the edge leading to the largest decrease of the nega-
tive log-likelihood is included in the model. Second, the
model is pruned through regularization. For each given
child, a gam is fitted with the variables corresponding to
each potential parent as a predictor. The edges from all
potential parent nodes that do not reach significance in
this model at a specific α-level are deemed unnecessary,
and are removed from the model.

The result of this fitting procedure is an additive
structural equation model that takes the form:

X j =
∑

k∈ paD ( j)

f j,k(Xk) + ε j (6)

with independent ε1,...,ε p, parent nodes paD( j) for
node j in dag D, all ε j ∼ N(0,σ 2), and smooth functions
f j,k(Xk) for predictor k ∈ paD( j).

The value of predictor X j thus is defined as the sum
of smooth functions f j , k(Xk) for all predictors that are
parents of vertex j in the dag D. An advantage of the
use of an additive structural equation model (as opposed
to, for instance, a linear structural equation model) is
that the underlying causal structure is identifiable from
the observational distribution of the variables. Further-
more, cams are capable of capturing non-linear causal
relations between variables.

We fitted a cam to the lexical-distributional variables
and the naming latencies for the two-character words in
Mandarin Chinese using the CAM package for r (Peters
& Ernest, 2015). We set the α-level for the pruning
procedure of the cam to 0.000001 and set all other pa-
rameters to their default values. The output of the cam

algorithm is a p by p adjacency matrix that represents
the estimated causal structure in the data. The cor-
responding dag provides a visual representation of the
fitted cam.

The naming latencies were averaged across partici-
pants prior to analysis. In addition to the variables
Frequency, C1 Frequency, C2 Frequency, C1 Strokes,

C2 Strokes, C1 Entropy, C2 Entropy, and PMI, we
added two new variables to the data set: C1 Consistency
and C2 Consistency. The variables C1 Consistency
and C2 Consistency are measures of the phonology-to-
orthography consistency of the first and second charac-
ter in a two-character word.

Let p be the pronunciation of character c in the two-
character word w and W be the set of words in which
p occurs. We define the phonology-to-orthography con-
sistency for word w as the proportion of words in W in
which the character that corresponds to p is c. C1 Con-
sistency and C2 Consistency thus are measures of the
extent to which homophony manifests itself with respect
to the pronunciation of the first and second character in
a two-character word.

The 48, 644 words in the cld contain 4, 895 unique
characters. The total number of unique syllables for the
48, 644 words in the cld is 1, 239 when tone is taken
into consideration. When tone is ignored, this number
is reduced to 395. A large number of orthographic units
is thus mapped onto a limited set of phonological forms.
Consequently, the mapping between phonology and or-
thography is less than consistent in Mandarin Chinese
and homophony is much more widespread in Mandarin
Chinese than it is in English.

Previous studies have reported effects of homophony
in the lexical decision task (Lee et al., 2015; Wang, Ning,
& Zhang, 2012; X. Chen et al., 2009; W. F. Chen, Chao,
Chang, & Hsu, 2016), as well as in word naming (Ziegler,
Tan, Perry, & Montant, 2000). For the current data set,
the effects of C1 Consistency and C2 Consistency did
not reach significance (cf. Y. Liu et al., 2007). We there-
fore omitted these predictors from the pamm analysis re-
ported above. As we will demonstrate below, however,
the inclusion of these variables in the cam analysis pro-
vides interesting insight into the structural organisation
of lexical-distributional space in Mandarin Chinese.

CAM results

The dag for the lexical-distributional variables and
the word naming latencies in Mandarin Chinese is pre-
sented in Figure 11. A total of 37 edges reached sig-
nificance at an α-level of 0.000001. Darker edges indi-
cate stronger causal relations. Edges to the response
time (i.e., to the vertex labelled RT) are indicates with
dashed lines, because the response times in the word
naming task are not part of lexical-distributional space.

Consistent with our a priori knowledge about
the connection between response times and lexical-
distributional variables, response times are connected to
the rest of the dag through incoming edges only: lexical
predictors cause changes in naming latencies, but nam-
ing latencies do not cause changes in lexical predictors.
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Figure 11. Directed acyclic graph (dag) of a Causal Additive Model (cam) fit to the lexical-distributional space
in Mandarin Chinese. All edges reached significance at an α-level of 0.000001. Darker edges indicate higher edge
scores.

Out of the incoming edges for RT, the edge between C1
Frequency and RT led to the greatest increase in the
log-likelihood of the model. Henceforth, we refer to the
increase in log-likelihood of the model for an edge as
the edge score. The edge score for the edge between C1
Frequency and RT is 48.156. The strong relationship
between C1 Frequency and RT is in line with the re-
sults of the pamm analysis reported above, in which the
effect of C1 Frequency had an effect size that was larger
than the effect sizes of the effects for the other lexical
predictors.

Causal relationships with response times exist for the
lexical variables C2 Frequency (edge score: 47.583), Fre-
quency (edge score: 47.495), C1 Strokes (edge score:
47.413), C1 Entropy (edge score: 47.542), C2 Entropy

(edge score: 47.431), and PMI (edge score: 47.727) as
well. Consistent with the results of the pamm analysis,
no causal relationship between C2 Strokes and RT was
observed at an α-level of 0.000001.

The effects of phonology-to-orthography consistency
did not reach significance in the pamm analysis. Here,
we observed a significant causal relationship between C1
Consistency (labeled as C1 CS in Figure 11) and RT
(edge score: 47.421), with reduced naming latencies for
words with a more consistent phonology-to-orthography
mapping for the first character. The causal relationship
between C2 Consistency (labeled as C2 CS in Figure 11)
and RT did not reach significance.

Below, we discuss the relations between the lexical-
distributional variables under investigation. Analogous
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to our description of the results for RT above, we dis-
cuss the incoming edges for each lexical-distributional
variable. As can be seen at the top of Figure 11, the
vertexes for C1 Strokes and C2 Strokes have no incoming
edges. None of the other lexical-distributional variables
therefore have a causal impact on these measures of the
visual complexity of a character.

C1 Strokes and C2 Strokes have a causal influence
on the corresponding frequency measures C1 Frequency
and C2 Frequency. The greater the number of strokes
in a character, the lower the frequency of that charac-
ter. The strength of this causal relationship is similar
for both characters (edge score C1: 48.514; edge score
C2: 48.297), which suggests that there is a stable causal
relationship between the visual complexity and the fre-
quency of a character. This relationship may exist for
pragmatic reasons. Characters with fewer strokes may
be used more often, because they are easier and less
time-consuming to write. Conversely, the increased vi-
sual information in characters with a large number of
strokes may help readers identify low frequency words
more easily (cf Baayen, Milin, Filipović Durdević, Hen-
drix, & Marelli, 2011; Hendrix, 2016). A causal connec-
tion exists between C1 Frequency and C2 Frequency as
well (edge score: 47.438). The higher the frequency of
the first character in a two-character compound words,
the higher the frequency of the second character. Higher
frequency characters thus tend to occur together in com-
pound words. No further incoming edges exist for C1
Frequency and C2 Frequency.

The frequency of a word is co-determined by the fre-
quency of its component characters, as indicated by sig-
nificant edges from C1 Frequency (edge score: 47.613)
and C2 Frequency (edge score: −47.645). The higher
the frequency of the characters in a word, the higher the
frequency of that word. The strength of the causal re-
lationships between the character frequencies and word
frequency is moderate. While the frequency of a two-
character word depends on the frequency of its com-
ponent characters to some extent, there are other fac-
tors that are not part of the current analysis that influ-
ence the frequency of a word as well. The most obvious
of these factors is the frequency of the concept a two-
character words refers to. The more often the need to
refer to this concept arises, the higher the frequency of
the word.

As we move down the dag depicted in Figure 11,
the number of incoming edges to each vertex increases.
Three incoming edges exist for both C1 Consistency and
C2 Consistency. C1 Strokes (edge score: 49.990), C1
Frequency (edge score: 47.468), and Frequency (edge
score: 47.417) have a causal effect on C1 Consistency.
Similarly, C2 Strokes (edge score: 48.774), C2 Frequency

(edge score: 47.523), and Frequency (edge score: 47.410)
have a causal effect on C2 Consistency. For both char-
acters, higher word and character frequencies lead to
a more consistent mapping between phonology and or-
thography, whereas visually complex characters result
in a less consistent mapping between phonology and or-
thography.

This pattern of results reveals more insight into how
the limited set of pronunciations is mapped onto the
much larger set of characters. High frequency, visually
simple characters have a privileged position in lexical
space, in the sense that they own the exclusive rights to
dedicated pronunciations. This setup allows language
users to access high frequency words as fast as possible.
Provided that these words make up the vast majority
of word tokens in written language, this reduces overall
processing times. By contrast, low frequency and visu-
ally complex characters share their pronunciations with
other low frequency, visually complex characters. Direct
competition for a pronunciation between low frequency
words and high frequency words thus is prevented. This
helps ensure that access to low frequency characters re-
mains available when it is required.

Significant causal relationships exist between entropy
of the first and the second character and all of the corre-
sponding lexical-distributional variables discussed thus
far. C1 Entropy causally depends on C1 Strokes (edge
score: 47.561), C1 Frequency (edge score: 48.024), Fre-
quency (edge score: 47.481), and C1 Consistency (edge
score: 50.305). Similarly, C2 Entropy is influenced in a
causal manner by C2 Strokes (edge score: 47.481), C2
Frequency (edge score: 50.702), Frequency (edge score:
47.509), and C2 Consistency (edge score: 47.906).

The causal connections between entropy on the one
hand and character and word frequency on the other
hand are not all that surprising, because both character
and word frequency are implicitly (character frequency)
or explicitly (word frequency) part of the definition of
entropy. High frequency characters occur in a larger
number of two-character compound words, which results
in a higher entropy. Conversely, if the frequency of a
word containing a character is particularly high com-
pared to the frequency of the other two-character that
contain the same character, this leads to a reduction in
entropy.

The causal relations of stroke counts and phonology-
to-orthography consistency with entropy may come as
more of a surprise. Characters with more strokes re-
sult in less entropy, whereas a more consistent map-
ping between phonology and orthography causes an in-
crease in entropy. Processing difficulties that arise due
to a high degree of visual complexity or an inconsistent
phonology to orthography mapping are thus offset by
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reduced uncertainty about the identity of one character
in a two-character word given the other character to
ensure identifiability. The picture that emerges then,
is that lexical-distributional space in Mandarin Chinese
describes a carefully balanced system in which values
of one lexical-distributional property that lead to pro-
cessing difficulties are compensated for by values other
lexical-distributional properties that guarantee success-
ful communication.

Furthermore, significant edges from C2 Frequency
(edge score: 47.408) and C2 Entropy (47.426) to C1
Entropy exist. The system may thus balance itself both
within and across characters. The causal links from C2
Frequency and C2 Entropy to C1 Entropy, however, are
relatively weak. Definite conclusions regarding inter-
character causal effects, therefore, would be premature.

The intricate interplay between the variables in the
dag that describes lexical-distributional space in Man-
darin Chinese culminates at the vertex for PMI. This
vertex has no less than 8 incoming edges. No causal
relation exists between C2 Strokes and PMI at an α-
level of 0.000001. Significant causal connections with
PMI, however, are present for C1 Frequency (edge score:
49.675), C2 Frequency (edge score: 49.347), Frequency
(edge score: 49.059), C1 Strokes (edge score: 47.406),
C1 Consistency (edge score: 47.456), C2 Consistency
(47.445), C1 Entropy (edge score: 47.682), and C2 En-
tropy (edge score: 47.838).

As was the case for the entropy measures, the causal
links of PMI with C1 Frequency, C2 Frequency, and
Frequency are less-than-surprising. pmi depends on all
three frequency measures by definition. The frequency
of the word is the observed frequency in Equation 3,
whereas the expected frequency of a two-character word
is a function of the product of the frequency of its com-
ponent characters. As expected, a greater entropy of
the first or the second character furthermore results
in a weaker association between both characters. The
greater the uncertainty about one character given the
other character, the weaker the association between
both characters.

The causal relations between pmi on the one hand and
the visual complexity and phonology-to-orthography
consistency of both characters on the other hand are
consistent with the causal connections between these
measures and the entropy measures discussed above. As
was the case for the entropy measures, visually com-
plex characters and characters with a less consistent
phonology-to-orthography mapping lead to higher val-
ues of PMI. The association between the characters in
a two-character words thus is stronger when these char-
acters are more difficult to process individually. The
system thus offsets character-level properties that re-

quire additional processing with word-level properties
that ensure identification of the word as a whole.

The pamm analysis for the word naming data re-
vealed robust effects of the information-theoretic mea-
sures entropy and pmi. During the early stages of the
response window, the instantaneous probability of a re-
sponse is significantly higher for high values of entropy.
The effect of pmi persists throughout a larger part of
the response window, with a lower probability of a re-
sponse when the association between the characters in
a two-character word is stronger. The cam analysis
provides more insight into both information-theoretic
measures and indicates that both measures are embed-
ded in a dynamic system that strives for global opti-
misation for efficient processing by balancing out lo-
cal bottlenecks that lead to processing difficulties with
lexical-distributional properties that guarantee success-
ful communication. Words with high stroke counts or an
inconsistent phonology-to-orthography mapping, for in-
stance, are characterized by reduced uncertainty about
the identity of one character given the other character
and a stronger association between both characters. Be-
low, we investigate word naming latencies in English to
establish if similar principles shape lexical-distributional
space and word naming latencies in an alphabetical lan-
guage.

English

Methods

Participants. For the analyses described below, we
use the word naming latencies for compound words in
the English Lexicon Project (elp Balota et al., 2007).
Participants for the word naming experiment data in the
elp were recruited from six universities in the United
States: Washington University, Wayne State Univer-
sity, Morehead University, University of South Florida,
SUNY Albany, and University of Kansas. A total of 443
participants took part in the experiment. The average
age of the participants was 23.51 (sd: 9.31).

Materials. The elp contains word naming laten-
cies for 40, 481 words. Each participant named 2, 530
words across two experimental sessions that took part
within a week of each other. From the set of 40, 481
words in the elp for which word naming latencies are
available, we extracted all compound words. This re-
sulted in a data set that contains naming latencies for
2, 604 compounds. The data set does not include com-
pounds in which the constituents are separated by a
space or a hyphen, as the elp does not include these
types of compounds.

Design. The response variable in our analysis is the
average naming latency in the elp for each compound.
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In addition to the control variable Initial Phoneme, the
predictors in the analyses reported below are lexical-
distributional variables that serve as the conceptual
equivalent of the lexical-distributional variables in the
analysis of the word naming data in Mandarin Chinese
reported above: Frequency, Modifier Frequency, Head
Frequency, Modifier Length, Head Length, Modifier En-
tropy, Head Entropy, and PMI.

We obtained the frequency of the modifier (i.e., the
left constituent of a compound), the head (i.e., the right
constituent of a compound), and the compound as a
whole from the Google 1T n-gram corpus (Brants &
Franz, 2006). As was the case for the frequency mea-
sures in Mandarin Chinese, we log-transformed each of
the frequency measures prior to analysis to remove a
rightward skew from the frequency distributions. We
thus refer to the frequency measures as (log) Frequency,
(log) Modifier Frequency, and (log) Head Frequency.

For the two-character compound words in Mandarin
Chinese, stroke counts for the first and second charac-
ter were included in the analysis as measures of visual
complexity. Analogously, we included the length in let-
ters for the modifier and the head as predictors in the
analysis of the word naming latencies in the elp. We
applied a square root transform to the length measures
to reduce asymmetry in the constituent length distribu-
tions. Henceforth, we therefore refer to the length of
the modifier and the head as (sqrt) Modifier Length and
(sqrt) Head Length.

We defined Modifier Entropy as the entropy over the
probabilities of the compounds that share the modifier
with the target word (see Table 1). Similarly, Head
Entropy is defined as the entropy over the probabilities
of the compound words that share the head with the
target word. We applied a square root transformation
to the entropy of the head and the modifier to reduce
asymmetry in the entropy distributions. We thus refer
to the entropy measures as (sqrt) Modifier Entropy and
(sqrt) Head Entropy.

As was the case for Mandarin Chinese, morphologi-
cal family size and morphological family frequency are
alternative measures of the combinatorial properties of
the constituents in a compound in English. Similar
to the situation in Mandarin Chinese, the raw corre-
lations of both family size ((log) Modifier Family Size:
r = −0.319, (log) Head Family Size: r = −0.227)
and family frequency ((log) Modifier Family Frequency:
r = −0.291, (log) Head Family Size: r = −0.240) with
the response times are higher than the correlations of
the entropy measures with the observed naming laten-
cies ((sqrt) Modifier Entropy: r = −0.257, (sqrt) Head
Entropy: r = −0.194). To some extent, this is due to
the higher correlations of the family size ((log) Mod-

ifier Family Size: r = 0.569, (log) Head Family Size:
r = 0.527) and family frequency measures ((log) Mod-
ifier Family Frequency: r = 0.537, (log) Head Fam-
ily Frequency: r = 0.523) with the corresponding con-
stituent frequencies, as compared to the entropy mea-
sures ((sqrt) Entropy Modifier: r = 0.441, (sqrt) Head
Entropy: r = 0.469).

In Mandarin Chinese, the effects of the entropy mea-
sures in a linear regression model were more significant
than the effects of the measures of family size and family
frequency once the frequency of the compound word and
its constituents was taken into account. In English, this
is not the case. The effects of family size in a linear
regression model that includes these frequency counts
((log) Modifier Family Size: t = −10.813, (log) Head
Family Size: t = −11.077) are somewhat what promi-
nent than the effects of entropy ((sqrt) Modifier En-
tropy: t = −8.214, (sqrt) Head Entropy: t = −7.948),
whereas the t-values of the effects of family frequency
((log) Modifier Family Size: t = −7.948, (log) Head Fam-
ily Size: t = −8.082) were similar to those of entropy.
Family size thus is a somewhat more powerful predictor
for the naming latencies for compound words in the elp

than entropy.

We nonetheless decided to enter the entropy measures
rather than the family size measures into the pamm anal-
ysis. The entropy measures and the family size mea-
sures are highly correlated. The correlation between
(sqrt) Entropy Modifier and (log) Family Size Modifier
is r = 0.881, whereas the correlation between (sqrt) En-
tropy Head and (log) Family Size Head is r = 0.899).
To a large extent, the family size and entropy measures
thus tap into the same concept. We opted to use entropy
rather than family size as a predictor in the pamm to
be able to directly compare the results of the time-to-
event analyses in Mandarin Chinese and English. We
included both the family size measures and the entropy
measures in the cam analysis of the word naming data
for the compounds in the elp, however.

The third information-theoretic measure under inves-
tigation is PMI. For English compound words, PMI is a
measure of the association between the modifier and the
head. We define PMI as the position-specific point-wise
mutual information between the modifier and the head
of a compound. Consider, for instance, the compound
“stardust”. The observed frequency of “stardust” in the
Google 1T n-gram corpus is 146, 733. The expected
frequency of “stardust” is obtained by applying Equa-
tion 2 to the summed frequency of all 6 compounds with
the modifier “star” (1, 065, 593), the summed frequency
of both compounds with the head “dust” (401, 377),
and the summed frequency of all compounds words
(4, 186, 689, 691) in the Google 1T n-gram corpus, which
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Table 4
Distributional statistics for the predictors (log) Frequency, (log) Modifier Frequency, (log) Head Frequency, (sqrt)
Modifier Length, (sqrt) Head Length, (sqrt) Modifier Entropy, (sqrt) Head Entropy, PMI. For each predictor, we
provide the original range and the adjusted range after outlier removal, as well as the mean, the median and standard
deviation after outlier removal.

predictor range adj. range mean median sd

(log) Frequency 0.00-19.88 0.00-17.43 11.48 11.45 2.03
(log) Modifier Frequency 9.17-22.74 9.17-20.98 16.91 17.02 1.82
(log) Head Frequency 0.00-23.27 0.00-21.56 16.68 16.90 2.39
(sqrt) Modifier Length 1.41-3.00 1.41-2.65 2.03 2.00 0.24
(sqrt) Head Length 1.41-3.46 1.41-2.65 2.08 2.00 0.23
(sqrt) Modifier Entropy -0.00-1.83 -0.00-1.83 0.97 1.10 0.58
(sqrt) Head Entropy -0.00-1.89 -0.00-1.89 1.02 1.15 0.63
PMI -9.39-31.96 -4.43-21.30 8.28 8.28 4.21

yields 102.16. Equation 3 then provides the value of

PMI for “stardust”: log2

(
146733
102.16

)
= 10.48. The distri-

bution of PMI was near-normal. No transformation was
therefore applied prior to analysis.

Consistent with the statistical procedure for Man-
darin Chinese, we excluded predictor outliers further
than 3 standard deviations from the respective predictor
mean from the data prior to the pamm analysis. As a
result, we removed 0.96% of the data (25 words) for (log)
Frequency,1.96% of the data (51 words) for (log) Mod-
ifier Frequency, 0.84% of the data (22 words) for (log)
Head Frequency, 0.46% of the data (12 words) for (sqrt)
Modifier Length, 1.08% of the data (28 words) for (sqrt)
Head Length, and 0.69% of the data (18 words) for PMI.
No outliers further than 3 standard deviations from the
predictor mean existed for (sqrt) Modifier Entropy and
(sqrt) Entropy Head. We furthermore removed com-
pound words that started with initial phonemes that
occurred less than 10 times in the data prior to analysis.
This resulted in the exclusion of 1.19% of the data (31
words). In total, 174 data points (6.68% of the data)
were removed prior to analysis. The number of words
in the data set for the pamm analysis thus is 2, 430. Ta-
ble 4 provides distributional statistics for the predictors
that entered the pamm analysis. As before, we present
the original ranges of the predictors and the predictor
ranges after outlier removal, as well as means, median,
and standard deviations of all predictors.

Procedure. Participants in the naming task for
the elp were instructed to respond as fast as possi-
ble, while retaining accuracy. Each participant named
2, 530 of the 40, 481 words across two experimental ses-
sions. Each experimental session consisted of blocks of
250 trials, with a 3 minute pause between blocks. The
first session consisted of 1, 500 trials, whereas the sec-
ond session consisted of 1, 000 trials. Prior to each trial,
three asterisks were shown in the center of the screen
and a 50 ms tone was presented to indicate the start

of a trial. Next, a word was presented in the center
of the screen in the standard QBASIC font in the 80
(column) by 30 (row) mode. The onset of the pronun-
ciation was automatically detected by a voice key. The
word remained on the screen for 250 ms after the onset
of the pronunciation before the asterisks indicating the
start of the next trial appeared on the screen. For more
details about the experimental procedure we refer the
interested reader to (Balota et al., 2007).

PAMM analysis

The pamm analysis of the compound word naming
data in the elp was identical to that of the word naming
data in Mandarin Chinese. The response time window
was limited from 590 ms to 920 ms after stimulus onset.
This interval contains 93.70% of the naming latencies
in the data. Again, however, it is important to note
that the remaining 6.30% of the data remain part of the
analysis, despite the fact that the model does not know
the exact response times for these words. As before, we
divided the response time window into 51 intervals that
correspond to the 0, 0.02, 0.04, …, 0.98, 1.00 quantiles of
the naming latency distribution for the pamm analysis.

The pamm for the English data models the instanta-
neous probability of a response as a function of time and
the predictors Initial Phoneme, (log) Frequency, (log)
Modifier Frequency, (log) Head Frequency, (sqrt) Modi-
fier Length, (sqrt) Head Length, (sqrt) Modifier Entropy,
(sqrt) Head Entropy, and PMI. As before, the baseline
hazard and time-constant predictor effects were esti-
mated by smooth terms, whereas time-varying predic-
tor effects were estimated with tensor product interac-
tions. Consistent with the pamm analysis for Mandarin
Chinese, we limited predictor smooths as well as time
by predictor tensor product terms to fourth order non-
linearities. No restrictions were imposed on the main
effect smooth for time that models the baseline hazard.

As was the case for Mandarin Chinese, medium-
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strength pairwise correlations between the predictors
are present. At κ = 67.287, the condition number for the
English data set is somewhat higher than the condition
number for the Chinese data set (κ = 40.581). As be-
fore, we therefore fit separate pamms with a main effect
smooth for time, a main effect smooth of the predictor
and a tensor product interaction between time and the
predictor for each of the predictor under investigation.
Unless explicitly stated otherwise, the predictor effects
in these pamms were qualitatively similar to the predic-
tor effects in the full model reported below.

PAMM Results

Table 5 presents the summary of the pamm fit to the
compound word naming data in English. As can be
seen in Table 5, the pamm revealed a significant effect of
time (χ2 = 1749.614, p < 0.000) as well as a significant
model intercept (z = -52.362, p < 0.000). Together,
these terms model the baseline hazard as a function
of time, which is presented in Figure 12. The instan-
taneous probability of a response rapidly increases be-
tween 590 and 630 ms after stimulus onset, after which
it gradually stabilizes. The functional shape of the base-
line hazard is comparable to the functional shape of the
baseline hazard in Mandarin Chinese. Consistent with
the results for Mandarin Chinese, we observed a signif-
icant effect of Initial Phoneme as well (χ2 = 215.512, p
< 0.000).

We furthermore found a significant main effect of
(log) Frequency (χ2 = 437.554, p < 0.000), as well as
a significant interaction of time by (log) Frequency (χ2

= 66.235, p < 0.000). The effect of (log) Frequency is
presented in Figure 13. The instantaneous probability
of a response is higher for high frequency compound
words from the start of the analysis window (590 ms
after stimulus onset) until 850 ms after stimulus on-
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Figure 12. Log-transformed instantaneous hazard func-
tion ( f (t)) with point-wise confidence intervals for En-
glish.

Table 5
Results of the piece-wise exponential additive mixed
model (pamm) fit to the naming latencies. For paramet-
ric terms, β estimates, standard errors of the β estimates
and p-values are shown. For smooth terms, estimated
degrees of freedom, χ2 values and p-values are provided.

parametric terms β S.E. P

Intercept -5.073 0.097 < 0.001
smooth terms edf χ2 P

time 8.865 1749.614 < 0.001
InitialPhoneme 18.137 215.512 < 0.001
(log) Frequency 2.021 437.554 < 0.001
time by (log) Frequency 1.002 66.235 < 0.001
(log) Modifier Frequency 2.666 35.341 < 0.001
time by (log) Mod. Freq. 2.626 13.781 0.003
(log) Head Frequency 2.901 21.803 < 0.001
time by (log) Head Freq. 2.388 8.615 0.076
(sqrt) Modifier Length 2.791 86.155 < 0.001
time by (sqrt) Mod. Length 1.483 20.480 < 0.001
(sqrt) Head Length 1.999 29.021 < 0.001
time by (sqrt) Head Length 1.873 6.919 0.039
(sqrt) Modifier Entropy 1.000 12.097 0.001
time by (sqrt) Mod. Entr. 1.762 3.230 0.259
(sqrt) Head Entropy 1.872 15.010 0.001
time by (sqrt) Head Entr. 1.001 0.043 0.836
PMI 1.000 46.120 < 0.001
time by PMI 3.840 6.665 0.241

set. The effect of (log) Frequency is most prominent at
the start of the analysis window. The whole-word fre-
quency effect observed here is similar to the compound
frequency effect for Mandarin Chinese reported above.
Furthermore, it is in line with the results of previous
studies in alphabetical languages that have documented
compound frequency effects on response times and eye
fixation patterns in a variety of tasks in English (Juhasz,
2008; Andrews, Miller, & Rayner, 2004; De Jong et
al., 2002), Dutch (Kuperman, Schreuder, Bertram, &
Baayen, 2009; Van Jaarsveld & Rattink, 1988), and

600 700 800 900

0
5

10
15

t ime (ms)

(l
og

) 
F

re
q

u
en

cy

 − 3 
 − 2 

 − 1 
 0 

 0  1 

 2 

Figure 13. Effect of (log) Frequency for English.
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Finnish (Kuperman, Bertram, & Baayen, 2008; Pollat-
sek, Hyönä, & Bertram, 2000).

The frequency of the modifier influences the proba-
bility of an instantaneous response as well. The pamm

analysis revealed both a main effect of (log) Modifier
Frequency (χ2 = 35.341, p < 0.000) and an interaction
between time and (log) Modifier Frequency (χ2 = 13.781,
p = 0.003). As can be seen in Figure 14, the effect of
(log) Modifier Frequency is significant throughout the
response time window (590 to 920 ms after stimulus
onset), with higher hazard rates for compound words
with more frequent modifiers. The effect of modifier fre-
quency is consistent with effects of the frequency of the
modifier in eye-tracking studies in English (Andrews et
al., 2004; Juhasz, 2008), Dutch (Kuperman et al., 2009;
Kuperman, Bertram, & Baayen, 2008), and Finnish
(Hyönä & Pollatsek, 1998; Bertram, Hyönä, & Pollatsek,
2004).

Previous studies furthermore reported effects of the
frequency of the head of a compound on eye fixation
patterns in lexical decision and sentence reading tasks
in English (Andrews et al., 2004), Dutch (Kuperman et
al., 2009), and Finnish (Kuperman, Bertram, & Baayen,
2008; Pollatsek et al., 2000). The frequency of the head
likewise affects the probability of an instantaneous re-
sponse in the elp word naming data. We observed a
significant main effect of (log) Head Frequency (χ2 =
21.803, p < 0.000). The interaction between time and
(log) Head Frequency , however, was marginally signifi-
cant only (χ2 = 8.615, p = 0.076). The added effect of
the significant main effect of (log) Head Frequency and
the marginally significant interaction of (log) Head Fre-
quency with time is presented in Figure 15. Consistent
with the significant main effect, the effect of (log) Head
Frequency is significant throughout the analysis window
(i.e., from 590 to 920 ms after stimulus onset).

The qualitative nature of effect of (log) Head Fre-
quency is more complicated than the qualitative nature
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Figure 14. Effect of (log) Modifier Frequency for En-
glish.
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Figure 15. Effect of (log) Head Frequency for English.

of the effects we have seen thus far. To some extent,
this is due to collinearity. A separate pamm with a
main effect smooth for time, a main effect smooth of
(log) Head Frequency and a tensor product interaction
between time and (log) Head Frequency revealed a some-
what simpler pattern of results. For the early parts of
the response window, this model showed a simple facil-
itatory effect of (log) Head Frequency. The early de-
creased hazard rates for the highest values of (log) Head
Frequency and the early increased hazard rates for the
lowest values of (log) Head Frequency therefore do not
seem to be robust. The increased hazard rates for com-
pounds with low frequency heads during the later stages
of the response window, however, were replicated in the
separate pamm for (log) Head Frequency.

Early on, the effect of (log) Head Frequency thus is in
line with the facilitatory effect of the frequency of the
second character reported for Mandarin Chinese above.
For compounds that cannot be named during the early
stages of the response window, however, the effect of
(log) Head Frequency reverses. At this point in time,
the probability of an instantaneous response is higher
for compounds with infrequent heads. For compounds
that cannot be responded to during the early stages
of the response window uncertainty remains about the
identity of the compound during the early stages of pro-
cessing. A potential explanation for the reversal of the
(log) Head Frequency effect is that low frequency heads
tend to occur in fewer compounds. As noted above,
the correlation between (log) Head Frequency and (log)
Head Family Size is r = −0.227). Low frequency heads
therefore provide more information about the identity
of the compound as a whole. This information may
help readers reduce the remaining uncertainty during
the later stages of the decision making process.

For Mandarin Chinese, we observed an effect of the
visual complexity of the first constituent of a two-
character compound word only. By contrast, the pamm

for the word naming data in English revealed significant
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Figure 16. Effect of (sqrt) Modifier Length for English.

effects of the visual complexity of both characters. For
both (sqrt) Modifier Length and (sqrt) Head Length, we
observed significant main effects ((sqrt) Modifier Length:
χ2 = 86.155, p < 0.000, (sqrt) Head Length: χ2 = 29.021,
p < 0.000) that differed significantly as a function of
time (time by (sqrt) Modifier Length: χ2 = 20.480, p
< 0.000, time by (sqrt) Head Length: χ2 = 6.919, p =
0.039).

The effects of the length of the modifier and the head
are presented in Figures 16 and 17, respectively. The in-
stantaneous probability of a response is higher for com-
pound words with shorter constituents. The effects of
the visual complexity of a compound are most promi-
nent during the early stages of the response window.
The effect of (sqrt) Modifier Length is less transient
than the effect of (sqrt) Head Length. The effect of
(sqrt) Head Length is no longer significant at 744 ms
after stimulus onset, whereas the effect of (sqrt) Modi-
fier Length remains significant until 893 after stimulus
onset. As such, the effect of (sqrt) Modifier Length is
temporally more widespread than the effect of the vi-
sual complexity of the first constituent of a compound
word in Mandarin Chinese as well. Whereas the effect
of (sqrt) Modifier Length persists for 303 ms, the effect
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Figure 17 . Effect of (sqrt) Head Length for English.

of C1 Strokes was significant during the first 199 ms of
the response window only.

We furthermore observed significant main effects of
both (sqrt) Modifier Entropy (χ2 = 12.097, p < 0.001)
and (sqrt) Head Entropy (χ2 = 15.010, p < 0.001). The
interaction of both predictors with time, however, did
not reached significance time by (sqrt) Modifier Entropy:
χ2 = 3.230, p = 0.259, time by (sqrt) Head Entropy: χ2

= 0.043, p = 0.836). This suggests that the effects of
the entropy of the head and the modifier are relatively
stable across time.

The effect of (sqrt) Modifier Entropy is presented in
Figure 18. Consistent with the effect for Mandarin Chi-
nese reported above, a higher entropy for the left con-
stituent of a compound word corresponds to a higher
probability of an instantaneous response. As indicated
by the lack of non-faded areas in Figure 18, however,
the effect of (sqrt) Modifier Entropy fails to reach sig-
nificance throughout the response time window. This
is possible, because nothing prevents the main effect
of a predictor and the partial interaction between time
and that predictor from being opposite in nature. Al-
though this is rare in practice, it is exactly what happens
here. The interaction between time and (sqrt) Modi-
fier Entropy cancels out the significant main effect of
(sqrt) Modifier Entropy to the extent that it loses sig-
nificance. The overall effect of (sqrt) Modifier Entropy is
marginally significant, with a minimum p-value of 0.052
at 637 ms after stimulus onset. The pamm analysis thus
provides some evidence for an effect of (sqrt) Modifier
Entropy. This evidence, however, is not overwhelming.

We did find robust evidence for an effect of (sqrt)
Head Entropy. The effect of (sqrt) Head Entropy is
shown in Figure 19. Consistent with the effect of the
entropy of the right constituent in two-character com-
pounds in Mandarin Chinese, the instantaneous prob-
ability of a response is higher when the entropy of the
head of a compound is high. The effect of (sqrt) Head
Entropy reaches significance from 628 to 746 ms after
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Figure 18. Effect of (sqrt) Modifier Entropy for English.
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Figure 19. Effect of (sqrt) Head Entropy for English.

stimulus onset. As was the case in Mandarin Chinese,
the influence of the entropy of the right constituent of a
compound on the decision making process thus is great-
est during the early stages of the response time window.
At these stages, the probability of an instantaneous re-
sponse is higher for compounds with a head that occurs
in more compounds with more similar frequencies.

The association between the constituents in a com-
pound significantly influences the instantaneous prob-
ability of a response as well. As was the case for the
entropy measures, the main effect of PMI was highly
significant (χ2 = 46.120, p < 0.000), whereas the inter-
action between time and PMI failed to reach significance
(χ2 = 6.665, p = 0.241). As was the case in Mandarin
Chinese, the effect of PMI is less transient than the ef-
fects of entropy. As can be seen in Figure 20, the effect
of PMI is significant from 590 to 821 ms after stimulus
onset. The qualitative nature of the effect of PMI in
English and Mandarin Chinese is similar as well, with a
higher instantaneous probability of a response for high
values of PMI in both languages.

The results for the pamm analysis in Mandarin Chi-
nese are remarkably similar to the results of the pamm

analysis in English with respect to the effects of the

600 700 800 900

0
5

15

t ime (ms)

P
M

I

 − 0.8 

 − 0.4 

 − 0.2 
 0 

 0
 

 0.2 

 0.4 
 0.6 

Figure 20. Effect of PMI for English.

information-theoretic measures entropy and pmi. The
qualitative nature and the temporal profile of the ef-
fects of both predictors are similar in both languages.
Whereas the effects of the entropy of both characters
were highly significant in Mandarin Chinese, however,
the effect of entropy of the modifier in English was
marginally significant only. This is probably due to the
reduced size of the data set for English, as compared to
Mandarin Chinese. The effects of entropy are limited to
the early stages of the response window. By contrast,
the effect of PMI remained significant through a large
part of the response time window in both languages.
Below, we explore the lexical-distributional space for
compound words in English in more detail to find out
if the similarities between English and Mandarin Chi-
nese exist at the level of relationships between lexical-
distributional variables as well.

CAM analysis

We fitted a cam to the lexical-distributional variables
and the naming latencies for compound words in the
elp that was identical to the cam fit to the data in
Mandarin Chinese. As lexical-distributional variables,
we included the predictors in the pamm model reported
above: (log) Frequency, (log) Modifier Frequency, (log)
Head Frequency, (sqrt) Modifier Length, (sqrt) Head
Length, (sqrt) Modifier Entropy, (sqrt) Head Entropy,
and PMI. As noted above, we furthermore added (log)
Modifier Family Size and (log) Head Family Size to the
model. As before, we set the α-level for the pruning
procedure of the cam to 0.000001.

CAM results

Figure 21 visualises the dag for the cam fit to the
word naming latencies and the lexical-distributional
variables for compound words in the elp. At the
adopted α-level of 0.000001, 27 edges reach significance.
As before, darker edges indicate stronger causal rela-
tions, as measured through edge scores (i.e., the decrease
in the log-likelihood of the model as a result of including
the corresponding edge).

As expected, the vertex for RT is connected to the
rest of the graph through incoming edges only. A causal
relation exists between RT and five of the eight lexical-
distributional variables: Modifier Length (edge score:
129.794), Head Length (edge score: 129.579), Head Fre-
quency (edge score: 129.381), Frequency (edge score:
129.623), and PMI (edge score: 130.262). The strong
causal relation between PMI and RT is in line with
the strong effect of PMI reported in the pamm analysis
above. The edges between Modifier Frequency, Modi-
fier Entropy, and Head Entropy and RT did not reach
significance at the α-level of 0.000001 adopted here.
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Figure 21. Directed acyclic graph (dag) of a Causal Additive Model (cam) fit to the lexical-distributional space in
English. All edges reached significance at an α-level of 0.000001. Darker edges indicate higher edge scores.

As was the case for the stroke counts in the cam

for Mandarin Chinese, the vertexes that correspond to
the measures of visual complexity Modifier Length and
Head Length in the dag for English have no incoming
edges. The length of the modifier and the head, how-
ever, have a causal influence on the respective frequency
counts. Consistent with the results for Mandarin Chi-
nese, shorter constituents have higher frequencies. As
indicated through the dark edges in Figure 21, the causal
connections between Modifier Length and Modifier Fre-
quency (edge score: 132.769) and between Head Length
and Head Frequency (edge score: 130.637) are strong.
Furthermore, as was the case for Mandarin Chinese, the
Modifier Frequency has a causal influence on Head Fre-
quency (edge score: 129.498). The higher the frequency
of the modifier, the higher the frequency of the head. In

English, too, high frequency constituents thus attract
other high frequency constituents. No further incoming
edges for Modifier Frequency and Head Frequency are
present in the dag.

The incoming edges for Frequency are identical in En-
glish and Chinese as well. Both the frequency of the
modifier (Modifier Frequency, edge score: 129.674) and
the frequency of the head (Head Frequency, edge score:
130.442) have a causal influence on the frequency of the
compound as a whole. Higher frequency constituents
form higher frequency compounds. This is most likely
an effect of semantic frequency. High frequency con-
stituents refer to high frequency objects or concepts in
the world. These high frequency objects or concepts
engage in more frequent relations with other objects or
concepts than their low frequency counterparts.
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Next, we turn to the first measure of the combinato-
rial properties of the constituent in a compound: mor-
phological family size. Modifier Family Size (labeled as
Modifier FS in Figure 21) is causally affected by Mod-
ifier Length (edge score: 129.866), and Modifier Fre-
quency (edge score: 132.224). Similarly, causal links
exist between Head Family Size (labeled as Head FS in
Figure 21) on the one hand and Head Length (edge score:
129.536) and Head Frequency (edge score: 130.904) on
the other hand. As expected, family sizes are larger
for higher frequency constituents. By contrast, longer
constituents result in smaller family sizes. To ensure the
compounds remain identifiable, the additional process-
ing costs for words with longer constituents are thus bal-
anced out with reduced uncertainty about the identity
of one constituent in a compound given the other con-
stituent. Finally, there is a significant causal connection
between Head Frequency and Modifier Family Size (edge
score: 129.414). The strength of this connection, how-
ever, is relatively weak, as is the raw correlation between
Head Frequency and Modifier Family Size (r = 0.009).
We therefore do not discuss this edge of the dag in more
detail.

The family size of the modifier and the head have
a causal effect on the corresponding entropy measures.
The strength of the causal connection between Modi-
fier Family Size and Modifier Entropy is considerable
(edge score: 134.969), as is the causal connection be-
tween Head Family Size and Head Entropy (edge score:
133.397). Unsurprisingly, the entropy is higher for con-
stituents that occur in a larger number of families. As
was the in Mandarin Chinese, the cam furthermore re-
vealed a causal effect Modifier Frequency on Modifier
Entropy (edge score: 129.941), with entropy increasing
as a function of modifier frequency.

The number of incoming links to the vertices cor-
responding to Modifier Entropy and Head Entropy is
lower in English than in Mandarin Chinese. To some ex-
tent, this is due to the inclusion of Modifier Family Size
and Head Family Size in the cam analysis for English.
Whereas the visual complexity and the frequency of the
constituent have direct causal effects on the entropy of
the constituent in Mandarin Chinese, the majority of
these causal effects is mediated by the family size mea-
sures in the dag for English. Indeed, a post-hoc analysis
revealed the presence of significant causal links from the
visual complexity and frequency of the constituents to
the entropy measures in a cam that does not include the
family size measures. In addition, the statistical power
is the cam analysis for English is lower than the statis-
tical power of the cam analysis for Mandarin Chinese,
due to the reduced size of the data set. As a result, the
relatively weak causal relation between the frequency of

the compound and the entropy measures reached signif-
icance in Mandarin Chinese, but not in English.

The final lexical-distributional variable, PMI, was
highly connected to the other lexical variables describ-
ing the lexical-distributional space of Mandarin Chinese.
The position of PMI in the dag for English is similar.
The value of PMI depends on 7 of the other 9 lexical
variables that were entered into the cam. Consistent
with the lack of a causal relation between C2 Strokes
and PMI in Mandarin Chinese, no significant causal re-
lation with PMI is present for Modifier Length and Head
Length at the adopted al pha-level of 0.000001. Modi-
fier Frequency (edge score: 129.726), Head Frequency
(edge score: 129.440), Frequency (edge score: 129.397),
Modifier Family Size (edge score: 131.894), Head Family
Size (edge score: 131.219), Modifier Entropy (edge score:
130.145), and Head Entropy (edge score: 130.037) all
have a causal effect on PMI, however. Consistent with
the results reported for Mandarin Chinese above, higher
values of all of these lexical-distributional variables re-
sult in a lower value of PMI. The association between the
constituents in a compound word thus is higher when
the compound and its constituents are more frequent
and when the constituents occur in a larger number of
compounds with more similar frequencies.

The results of the pamm and cam analyses for com-
pound words in Mandarin Chinese and English converge
to a remarkable degree. The effect of the visual com-
plexity of the second constituent failed to reach signifi-
cance in Mandarin Chinese, whereas the effect of the en-
tropy of the first constituent was marginally significant
in English. The qualitative nature of the effects of con-
stituent and compound frequency, visual complexity,
entropy, and pmi, however, was consistent across both
languages. The organisation of lexical-distributional
space in both languages showed remarkable similarities
as well. The corresponding connection of nearly all con-
nections that reached significance in the cam for En-
glish were significant in the cam for Mandarin Chinese
as well. The dag for Mandarin Chinese, however, con-
tained a larger number of edges. This is presumably due
to the larger size of the data set for Mandarin Chinese,
which is a result of the increased prevalence of com-
pound words in this language as compared to English.
The image that emerges from the cam analyses is that
the distributional space in both Mandarin Chinese and
English describes a complex dynamic system in which
properties of compounds words that lead to processing
difficulties are offset by lexical-distributional properties
that ensure identifiability.
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Discussion

We investigated the nature of information-theoretic
effects on compound processing in the word naming task
in two languages: Mandarin Chinese and English. The
word naming data for Mandarin Chinese were obtained
through a word naming experiment, in which we asked
3 participants to read aloud 25, 935 two-character com-
pound words in Mandarin Chinese. The word naming
data for English were extracted from the English Lexi-
con Project (elp Balota et al., 2007). For each language,
we carried out two analyses of the data: a time-to-
event analysis using piece-wise exponential mixed mod-
els (pamms; Bender & Scheipl, 2018; Bender, Groll, &
Scheipl, 2018; Bender, Scheipl, et al., 2018) and a causal
inference analysis using causal additive models (cams;
Peters et al., 2014).

The aim of the pamm analysis was to establish to
what extent information-theoretic measures influence
language processing for compound words in the word
naming task. Bien et al. (2005) reported effects of the
entropy of the constituents of a compound in a response-
association task in Dutch. The entropy effects observed
by Bien et al. (2005) were replicated for the word nam-
ing data in the current study. For Mandarin Chinese,
we observed robust, highly significant effects of the en-
tropy of both the first and the second character on the
instantaneous probability of a response. For English,
we found evidence for effects of the entropy of both the
modifier and the head as well. Compounding, however,
is a much less common phenomenon in English than in
Mandarin Chinese. The data set for English, therefore,
was an order of magnitude smaller than the data set for
Mandarin Chinese. As a result, the effect of the entropy
of the modifier was marginally significant only. The ef-
fect of the head, by contrast, was highly significant.

The qualitative nature of the effects of entropy were
similar in Mandarin Chinese and English. The entropy
of a constituent is high when that constituent occurs
in a larger number of compounds with more similar
frequencies. Consistent with the effects of entropy re-
ported for Dutch by Bien et al. (2005), we found facili-
tatory effects of entropy in both Mandarin Chinese and
English. The additional experience with high entropy
constituents thus leads to a processing advantage for
compounds that contain these constituents. The effects
of entropy were most prominent (Mandarin Chinese) or
exclusively present (English) during the early stages of
the decision making process. The temporal profile of the
effect of entropy thus was similar across both languages
as well.

We investigated the effects of a second information-
theoretic measure as well. Point-wise mutual informa-
tion (pmi) is a measure of the association between the

constituents in a compound word. The more often the
constituents occur together and the less often each of
the constituents occurs in other compound words, the
higher the value of pmi. To our knowledge, effects of pmi

have not been reported in previous studies. Here, we
observed highly significant effects of pmi on the instan-
taneous probability of a response in the word naming
task in both Mandarin Chinese and English.

As was the case for the effects of entropy, the quali-
tative nature of the effects of pmi in Mandarin Chinese
and English was highly similar. The stronger the asso-
ciation between the constituents in a compound word,
the lower the instantaneous probability of a response.
The inhibitory effect of pmi might seem surprising. The
stronger the association between the constituents in a
compound, the more the uncertainty about one con-
stituent given the other constituent is reduced. Con-
versely, however, readers have more experience with
constituents that occur in a larger number of com-
pounds, and that hence are less strongly associated with
each of these constituents. Similar to the effects of en-
tropy, the effects of pmi thus may be directly related to
readers’ experience with the constituents in a compound
in the context of derivational words.

The effects of entropy were most prominent during
the early stages of the response window. By contrast,
the effect of pmi was less transient and remained sig-
nificant throughout most of the response time window
in both Mandarin Chinese and English. Whereas the
role of the combinatorial properties of the constituents
in a general sense was limited to the earlier stages of
the decision making process, the association between the
specific constituents in a compound continued to inform
this process throughout the response time window. The
pamm analysis thus sheds further light on the temporal
profile of the effects of the information-theoretic mea-
sures.

English and Dutch are alphabetical languages with a
relatively rich inventory of phonological forms, in which
complex onsets and offsets exist. Compounding is a rel-
atively infrequency phenomenon in these languages. By
contrast, Mandarin Chinese is a logographic language
with a limited set of phonological forms, even when the
presence of lexical tones is taken into account. To allow
language users to efficiently distinguish word forms in
the auditory modality, the language heavily relies on
compound words. The prevalence of compound words
therefore is much higher in Mandarin Chinese than in
English. Despite these difference, however, the effects of
the information-theoretic measures entropy and pmi on
the instantaneous probability of a response in the word
naming task are highly similar. The current results,
therefore, suggest that the effects of these measures on
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compound processing may be general property of lan-
guage processing that is relatively independent of the
properties of the language under investigation. Further
research, however, is necessary to more solidly establish
this conclusion.

The cam analysis focused on the relations between
lexical-distributional variables in both languages. The
vertices in the directed acyclic graphs (dags) for the
cam models were highly connected in both Mandarin
Chinese and English. Lexical-distributional variables
thus are not isolated concepts that describe independent
properties of compound words and their constituents.
Instead, strong causal relations exist between lexical-
distributional variables. The values of a lexical predictor
thus tend to causally depend on the values of multiple
other predictors. The high degree of connectivity in the
dags reached its apex at the vertices corresponding to
the information-theoretic measures entropy and pmi.

The organisation of lexical-distributional space in
Mandarin Chinese and English converged to a remark-
able degree. As expected, and by definition, the fre-
quency of a constituent had a causal effect on the en-
tropy of that constituent, with higher values of entropy
for more frequent constituents in both Mandarin Chi-
nese and English. The entropy of a constituent, how-
ever, was also causally affected by its visual complexity,
either directly (Mandarin Chinese) or indirectly (En-
glish, through the family size of the constituent). Fur-
thermore, less-consistent mappings between the phonol-
ogy and orthography in Mandarin Chinese results in
higher entropies. The variable pmi was likewise causally
connected to the other lexical-distributional variables.
Both in Mandarin Chinese and in English, the frequency
and the entropy of the constituents as well as the fre-
quency of the compound as a whole had causal effects on
the association between the characters in a compound
word. Furthermore, the consistency of the phonology-
to-orthography mapping in Mandarin Chinese had a
causal influence not only on the entropy of the con-
stituents, but also on the pmi of the compound as a
whole.

The picture that emerges, then, is that the
information-theoretic measures entropy and pmi do
not constitute isolated concepts that exist indepen-
dently of other lexical-distributional variables. Instead,
strong connections exist between the various lexical-
distributional aspects of compound words. Generally
speaking, properties of compound words that might
lead to processing difficulties are offset by other prop-
erties that help correctly identify a compound word.
The uncertainty about the identity of one constituent
given the other constituent, for instance, tends to be
lower for words with a high degree of visual complexity

or an inconsistent phonology-to-orthography mapping.
Both information-theoretic measures, entropy and pmi

thus describe properties of a complex system in which
processing impediments are counterbalanced by lexical-
distributional characteristics that ensure successful com-
munication. Arguably, Mandarin Chinese is a more en-
gaging showcase of this system as compared to English,
due to the higher prevalence of compound words in the
languages and the interesting issues that arise due its
more limited inventory of phonological forms. Despite
the differences between Mandarin Chinese and English,
however, the cam analysis indicates that the way in
which the language is optimised for efficient process-
ing and successful communication of compound words
is highly similar in both languages.
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