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Abstract
For the most part, the effects of lexical-distributional properties of words
on visual word recognition are well-established. More uncertainty remains,
however, about the influence of these properties on lexical processing for
nonwords. The work presented here investigates the mechanisms that guide
nonword processing through an analysis of lexical decision latencies for
18,547 words and 27,079 nonwords in the British Lexicon Project (Keuleers,
Lacey, Rastle, & Brysbaert, 2012) using piece-wise generalized mixed mod-
els (pamms; Bender & Scheipl, 2018; Bender, Groll, & Scheipl, 2018; Ben-
der, Scheipl, Hartl, Day, & Küchenhoff, 2018). The pamm analysis of the
data revealed two novel effects for nonwords in the lexical decision task.
First, whereas previous studies reported effects of base word frequency, the
current study is the first to document a true nonword frequency effect. Sec-
ond, we report effects of semantic neighborhood density and orthography-to-
semantics consistency; not only for words, but also for nonwords. The effects
of frequency, semantic neighborhood density and orthography-to-semantics
consistency are facilitatory for words, but inhibitory for nonwords. The
pamm analysis offers insights into the temporal development of the effects
of lexical-distributional variables that are not available through more tradi-
tional analysis techniques and that shed new light on lexical processing in
visual word recognition tasks. The implications of the reported results for
models of visual word recognition are discussed.

Keywords: nonwords, nonword frequency, semantic neighborhood density,
orthography-to-semantics consistency, lexical decision
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Introduction

The perhaps most well-known experimental task in psycholinguistic research is lexical
decision (Meyer & Schvaneveldt, 1971). Participants are presented with a sequence of letters
and are asked to decide if this sequence of letters is a real word or a nonword. Typically,
the analysis of lexical decision data focuses on the response times and the accuracy of the
responses for real words. The effects of lexical-distributional properties of words on the
performance in the lexical decision task are well-documented and by and large undisputed.
Commonly reported effects include the effects of word frequency (Forster & Chambers,
1973; Murray & Forster, 2004; Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004;
Keuleers et al., 2012), word length (O’Regan & Jacobs, 1992; Hudson & Bergman, 1985;
New, Ferrand, Pallier, & Brysbaert, 2006), and orthographic neighborhood density (i.e., the
number of words that are orthographically similar to a word; Yarkoni, Balota, & Yap, 2008;
Keuleers, Diependaele, & Brysbaert, 2010; Andrews, 1989, 1992, 1997; Forster & Shen,
1996). The response patterns to nonwords in the lexical decision task have received consid-
erably less attention, although several studies that specifically investigate lexical processing
of nonwords in the lexical decision task do exist (Whaley, 1978; Perea, Rosa, & Gómez,
2005). Recently, Yap, Sibley, Balota, Ratcliff, and Rueckl (2015) made a substantial con-
tribution to the nonword reading literature through a large-scale regression analysis of the
responses to nearly 37, 000 nonwords in the English Lexicon Project (elp; Balota et al.,
2007). Nonetheless, the amount of studies that investigated nonword processing in visual
word recognition is less-than-overwhelming.

There are at least two reasons for the relatively limited number of studies on nonword
reading. First, it could be argued that normal language processing concerns word reading,
not nonword reading. Nonword reading, some may argue, is restricted to the context of
artificial experimental tasks. In these tasks, nonwords serve as foils, and are considered
uninteresting and uninformative about word recognition processes. The absence (or limited
size) of masked identity priming effects for nonwords (cf. Forster, 1998), for instance, is
often taken as evidence for the absence of lexical representations for nonwords. The absence
of lexical representations for nonwords, however, does not imply the absence of lexical
activation for nonwords. A number of studies reported inhibitory effects of orthographic
neighborhood density for nonwords in the lexical decision task (Yap et al., 2015; Balota
et al., 2004; Carreiras, Perea, & Grainger, 1997; Forster & Shen, 1996; Andrews, 1989;
Coltheart, Davelaar, Jonasson, & Besner, 1977). These effects are hard to reconcile with
the notion that lexical activation is absent for nonwords altogether. Furthermore, while it
may be true that word reading is the default in everyday language use, it is not the case
that nonword reading exists in the context of contrived laboratory experiments only. During
normal reading, it is quite common to encounter words we are not familiar with. Indeed,
processing unknown words is essential in language learning (Norris, 2006; Chaffin, Morris,
& Seely, 2001).

Response patterns for nonwords in psycholinguistic experiments provide further infor-
mation about the mechanisms that underlie nonword processing. In addition, however, the
study of experimental data for nonwords has the potential to shed further light on the men-
tal architectures that drive lexical processing for real words. Behavioral patterns in lexical
decision latencies for nonwords can thus provide valuable information for the development
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of computational models of visual word recognition in the lexical decision task. As an ex-
ample, the variable deadline for a “yes” response in the multiple read-out model (mrom;
Grainger & Jacobs, 1996) for visual word recognition was inspired by the inhibitory effect
of orthographic neighorhood density for nonwords (Yap et al., 2015; Balota et al., 2004;
Carreiras et al., 1997; Forster & Shen, 1996; Andrews, 1989; Coltheart et al., 1977).

The second reason for the limited number of studies on nonword reading is that the
range of lexical-distributional predictors that can be computed for nonwords is more narrow
than the range of lexical variables that is available for words. Analyses of response patterns
for nonwords have therefore primarily revolved around three concepts: length, orthographic
neighborhood density, and base word frequency (cf. Yap et al., 2015). Longer nonwords
consistently give rise to longer response times (Yap et al., 2015; Balota et al., 2004; Whaley,
1978), as do nonwords with a large number of real word orthographic neighbors (see above).
Base word frequency is an approximation of the frequency of a nonword through either the
frequency of the real word it was derived from or the frequency of a nonword’s orthographic
neighbors. The effects of base word frequency, however, have been less than consistent
in previous studies. Yap et al. (2015) and Ziegler, Jacobs, and Klüppel (2001) reported
facilitatory effects of base word frequency. By contrast, Andrews (1996) and Perea et al.
(2005) documented inhibitory effects. Allen, McNeal, and Kvak (1992) did not observe a
significant effect of base word frequency in either direction.

Recent developments have extended the set of lexical predictors that can be computed
for nonwords. First, the exponential growth of the world wide web has made available an
enormous corpus of real life language use. Lexical-distributional properties of words in
this corpus can be gauged through information obtained from graphical user interfaces to
algorithms that allow for a comprehensive search of the world wide web, such as Google
search. As a result, it is now possible to obtain true frequency counts for nonwords through
the number of results returned by a Google search. Frequency effects for nonwords therefore
no longer need to be approximated through frequencies of orthographically similar real
words. In this paper, we report a robust effect of the Google frequency of nonwords with a
considerable effect size. This effect of the Google frequency of a nonword is a better predictor
of response patterns in the lexical decision task than is base word frequency and that the
effect of nonword frequency cannot be reduced to effects of base word frequency, component
letter n-gram frequencies, nonword length, orthographic or semantic neighborhood density,
or orthography-to-semantics consistency.

Second, recent advances in the field of distributional semantics have made it possible
to compute distributed semantic representations for out-of-vocabulary words (i.e., words
that are not in the training data) and, by extension, for nonwords. Specifically, fastText,
which is an extension of the continuous skip-gram model in word2vec (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013; Mikolov, Chen, Corrado, & Dean, 2013), is able to compute
semantic vectors for nonwords on the basis of semantic vectors of the component letter
n-grams in a nonword. The semantic vectors for nonwords generated by fastText allow for
the computation of indices of the lexical-distributional properties of semantics for nonwords.
An example of a measure that proxies the semantics of nonwords is semantic neighborhood
density, which taps into the number of words that are semantically similar to a (word
or) nonword. A second measure of the semantic information associated with a nonword is
orthography-to-semantics consistency, which gauges the semantic similarity between a word
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and orthographically similar words (cf. Marelli & Amenta, 2018). Effects of both semantic
neighborhood density (Buchanan, Westbury, & Burgess, 2001; Pexman & Hargreaves, 2008;
Shaoul & Westbury, 2010) and orthography-to-semantics consistency (Marelli, Amenta, &
Crepaldi, 2015; Marelli & Amenta, 2018) have been reported for words in the lexical decision
task. Here, we investigate the effect of both measures for nonwords.

Specifically, we investigate the effects of frequency, semantic neighborhood density,
and orthography-to-semantics consistency as well as well as the effects of length, ortho-
graphic neighborhood density, and mean bigram frequency for 18,547 words and 27,079
nonwords in the British Lexicon Project (henceforth blp; Keuleers et al., 2012). We anal-
yse the lexical decision latencies using a statistical technique from time-to-event analysis,
the piece-wise exponential additive mixed model (henceforth pamm; Bender & Scheipl, 2018;
Bender, Groll, & Scheipl, 2018; Bender, Scheipl, et al., 2018). pamms fall under the statis-
tical umbrella of time-to-event analysis. Time-to-event analysis techniques model the time
until an event of interest occurs. Time-to-event analysis has a rich history in medicine and
mechanical engineering, in which it is also known as survival analysis. Events of interests
in these fields may be the death of a patient or the failure of a mechanical device. Here, we
apply time-to-event analysis to the lexical decision data from the blp. The event of interest
in the lexical decision task is the response of a participant to a word or nonword stimulus.
Rather than the response time itself, the dependent variable in a time-to-event analysis of
lexical decision data is the probability of a response as it evolves over the response time
window.

The advantage of time-to-event analysis in the context of lexical decision data is the
ability to model predictor effects as a function of time - even though the response variable
(i.e., the reaction time) is unidimensional in nature. Predictor effects thus may vary as a
function of time in both a quantitative (i.e., “the effect of word frequency is most prominent
during the early stages of the response window”) and a qualitative fashion (i.e., “the effect of
word frequency is facilitatory during the early stages of the response window, but inhibitory
during the late stages of the response window”). As such, time-to-event analysis offers the
opportunity to gain insight into the temporal development of language processing in the
lexical decision task.

A number of recent studies have started to explore the potential of time-to-event anal-
ysis for the analysis of psycholinguistic data sets. Typically, the time-to-event analyses in
these studies involve a comparison of survival functions (i.e., the number of stimuli for which
the event of interest did not yet occur at time t) or hazard curves (i.e., the instantaneous
probability of the event of interest at time t, provided that it did not occur prior to time t)
for dichotomized versions of numerical predictors. In eye-movement research, for instance,
the event of interest can be defined as the end of a fixation of the eye. Investigations of eye
fixation durations during reading have shown divergences in the survival functions for high
and low frequency words as early as 112 ms after fixation onset (Sheridan, Rayner, and
Reingold (2013), see also Reingold, Reichle, Glaholt, and Sheridan (2012)) and divergences
in the hazard curves for quantiles of the word frequency and word length distributions be-
tween 140 and 250 ms after fixation onset (Feng, 2009). Schmidtke, Matsuki, and Kuperman
(2017) applied a similar analysis technique to investigate the relative timing of predictor
effects for morphologically complex words (e.g., “goodness”; “good” + “ness”) in the lexical
decision task. Schmidtke and colleagues found an early divergence of the survival curves
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for low frequency and high frequency words, followed by concurrent effects of dichotomized
morphological and semantic predictors. Schmidtke et al. (2017) argue that this pattern of
results challenges theoretical accounts of morphological processing that posit strictly se-
rial processing of morphologically complex words, with form-based processing preceding
semantic processing (cf. Taft, 2004).

The applications of time-to-event analysis to psycholinguistic data have uncovered in-
teresting facts about the nature of lexical processing. The conversion of numerical variables
into two-level or multi-level categorical variables, however, is less-than-desirable, as is fitting
separate objective functions for each level of each lexical variable. Schmidtke (2016, p.160)
acknowledges the problems associated with the “multiple models” approach and identifies
a number of further shortcomings of the methodology described above, including the in-
ability to account for subject and item related variance. He concludes that “Ultimately,
more complex solutions to modelling survival rates of lexical decision responses will be able
remedy many of these issues”.

Luckily, “more complex solutions” exist in the statistical literature. A well-known and
widely used model for time-to-event analysis that allows for an estimation of the influence
of numerical variables on the time to the event of interest is the proportional hazards
model proposed by Cox (1972). The Cox proportional hazards model assumes that the
effects of predictors on the hazard function are constant over time. Extensions of the Cox
model, however, have been developed to allow for time-varying predictor effects. Nilsson
(2012) compared the fit of a general survival curve, the Cox proportional hazard model,
and the extended Cox model in a time-to-event analysis of the duration of eye fixations
during newspaper reading (as collected in the Dundee corpus, see Kennedy, 2003). An
extended Cox model with six lexical predictors (including word frequency and word length)
led to a substantial reduction in prediction error for held-out data as compared to both
the general survival curve and a standard proportional hazards Cox model with the same
set of predictors. The effects of the lexical predictors were most prominent between 175
and 225 ms after the onset of the fixation. Nilsson (2012) concluded that lexical variables
have non-trivial effects on the time to the end of a fixation, and that the strength of these
effects varies considerably as a function of time. An alternative implementation of a time-
to-event analysis technique that allows for time-varying predictor effects is the additive
hazards model proposed by Aalen (Aalen (1980), see also Aalen (1989, 1993); Scheike and
Martinussen (2006)).

The extended Cox proportional hazards model and the Aalen additive hazards model
allow predictor effects to vary in a non-linear manner as a function of time. By default,
the effects of predictors themselves, however, are linear in both models. Workarounds that
allow for non-linear predictor effects have been developed, but typically require the explicit
specification of the functional form of a predictor effects, either through a (semi-)automated
identification procedure (cf. Branders, Frénay, & Dupont, 2015; Perera & Tsokos, 2018) or
with the use of domain-specific knowledge that is available prior to analysis. The statis-
tical technique for time-to-event analysis adopted here, the pamm, is an extension of the
generalized additive mixed-effect model (gamm; Wood, 2011, 2017). As such, it straightfor-
wardly allows for non-linear predictor effects that develop in a non-linear manner over time.
The functional form of non-linear effects in both the predictor dimension and the time
dimension is estimated automatically through generalized cross validation or (restricted)
maximum likelihood measures.
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pamms offer detailed insight into the temporal development of non-linear predictor
effects in response time analyses. As such, they have the potential to uncover information
about the temporal dynamics of visual word recognition in the lexical decision task that can
help further the development of models of visual word recognition in the lexical decision task.
A detailed introduction to the pamm is provided in the analysis section of this paper. For the
interested reader, we provide the results of a more traditional multiple regression analysis
in the discussion section of this paper. The qualitative and quantitative nature of predictor
effects is similar in the pamm analyses reported here and in the multiple linear regression
models. The pamm analyses, however, provides a richer window into the contribution of
lexical-distributional predictors to the response times in the lexical decision task.

Methods

Materials

From the British Lexicon Project (henceforth blp; Keuleers et al., 2012) we extracted
average lexical decision latencies for all words for which at least 10 observations with a
correct response were available and that had a minimum frequency of 0.1 per million in
the subtlex-us corpus (Brysbaert & New, 2009). This resulted in a set of 18,547 words.
Furthermore, we extracted average response times for the 27,079 nonwords in the blp for
which at least 10 observations with a correct response were available.

The nonwords in the blp were created using the pseudoword generator Wuggy
(Keuleers & Brysbaert, 2010). Four criteria were followed for the creation of the nonwords:
“(1) the nonword matched the syllabic and subsyllabic structure of the target word; (2) it
differed from the target word in exactly one subsyllabic segment (onset, nucleus, or coda)
for monosyllabic target words and in two subsyllabic segments for disyllabic target words;
(3) the transition frequencies of the subsyllabic segments of the target word were matched
as closely as possible; and (4) the morphological structure of the word was retained (e.g., if
the word was a plural form, we tried to make a matching pseudoplural)” (Keuleers et al.,
2012, p. 209). Despite the careful matching of nonwords to target words it is not the case
that each nonword in the blp can easily be linked to its target word by human readers. The
first five nonwords in the data set, for instance, are “alcirans”, “walfine”, “doller”, “invost”,
and “pinchtuck”. Out of these five words the word that is most reminiscent of a real word
is “doller”; which is highly similar to the real word “dollar”. This similarity, however, is
coincidental: given criterium (2) for the generation of nonwords, the target word for the
nonword “doller” could not have been “dollar”.

Design

The response variable under investigation is the average lexical decision latency across
participants for the correct responses to the items in the set of words and nonwords described
above. For both words and nonwords, we investigate the effects of six lexical predictors:
frequency, length, mean bigram frequency, orthographic neighborhood density, semantic
neighborhood density, and orthography-to-semantics consistency.

Frequencies for both words and nonwords were obtained semi-automatically through
Google searches in the English language. Reported frequencies are the number of results
estimated by the Google search engine (i.e., [xxx] in "About [xxx] results"). All frequencies
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were collected between August 29, 2019 and September 2, 2019. Of the 27,079 nonwords
under investigation, 1,504 had a Google frequency of 0. No less than 94.45% of the nonwords
thus had a non-zero frequency on Google. Both word frequencies and nonword frequencies
were log-transformed prior to analysis to remove a rightward skew from the frequency
distributions. Henceforth, we therefore refer to these frequency measures as (log) frequency.

Previous studies furthermore reported effects of base word frequency. Base word
frequency refers to the frequency of the real word a nonword is based on. The base words
for the nonwords in the blp are, unfortunately, not publicly available. To overcome a
similar hurdle, Yap et al. (2015) approximated base word frequency through the average
frequency of a nonword’s orthographic neighbors. For the nonwords in the elp, they found
that higher values of this base word frequency measure corresponded to shorter response
times. For the current data, however, the effect of a base word frequency measure based on
the average frequency of a nonword’s orthographic neighbors in a multiple linear regression
model including the other predictors under investigation was relatively weak (t = 2.602,
p = 0.009). By contrast, the effect of the Google frequency of a nonword in a similar model
was overwhelming (t = 49.721, p < 0.001). Indeed, the effect of base word frequency has
been less than consistent across studies. Whereas, Yap et al. (2015) and Ziegler et al. (2001)
observed facilitatory effects of base word frequency, Andrews (1996) and Perea et al. (2005)
found inhibitory effects. Consistent with the current findings, Allen et al. (1992) failed to
observe an effect of base word frequency in either direction. Given these considerations, we
omitted base word frequency from the analyses reported below.

For both words and nonwords, word length is defined as the length of the word in
letters. The word length measures will be referred to as length throughout the rest of this
paper. A number of options exist with respect to measures of the orthographic neighborhood
density for words and nonwords. The orthographic neighborhood density measure that is
perhaps most well-known is Coltheart’s N (Coltheart et al., 1977), which defines the number
of orthographic neighbors of a word as the number of words of the same length that differ by
one letter from the target word (e.g.; neighbors of the word “bear” include “pear”, “hear”
and “beak”, but not “ear”). For the current data, however, an alternative measure of
orthographic neighborhood density, the average orthographic Levenshtein distance between
a word and its 20 closest neighbors (henceforth OLD20 ; Yarkoni et al., 2008; Levenshtein,
1996) proved more predictive. The Levenshtein distance between two words is defined as
the number of deletions, additions, or substitutions that are necessary to convert one word
into the other. The Levenshtein distance between the words “bear” and “part”, for instance,
is 3 (one substitution, one deletion, and one addition).

The OLD20 measures were calculated through the old20() function in the vwr pack-
age for r (Keuleers, 2013). For both words and nonwords the 20 closest neighbors were
selected from the set of 18,547 real words under consideration. For the word “bear”, the set
of words under consideration contains over 20 Levenshtein neighbors (i.e., words at a Lev-
enshtein distance of 1; “bar”, “bead”, “beak”, “beam”, “bean”, “beard”, “bears”, “beat”,
“beau”, “beer”, “boar”, “dear”, “ear”, “fear”, “gear”, “hear”, “near”, “pear”, “rear”, “sear”,
“tear”, “wear”, “year”). The value of OLD20 for “bear”, therefore, is 1. The nonword
“fretto” has no orthographic neighbors at a Levenshtein distance of 1, 7 neighbors at a
distance of 2 (“fresco”, “fret”, “frets”, “ghetto”, “grotto”, “presto”, and “pretty”) and over
70 neighbors at a distance of 3. For the nonword “fresco”, OLD20 thus is 7∗2+13∗3

20 = 2.65.
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As was the case for the word frequency distributions, the distribution of orthographic Lev-
enshtein distance was characterized by a rightward skew. Hence, we applied a logarithmic
transform to OLD20 prior to analysis.

The fourth lexical predictor, mean bigram frequency, denotes the average frequency
of the letter bigrams in a word. We calculated bigram frequencies on the basis of the
Google word frequencies for the set of words under investigation. The frequencies of the
letter bigrams in the word “bear”, for instance, are 213.05 billion (“be”), 469.13 billion
(“ea”), and 548.64 billion (“ar”). The value of mean bigram frequency for the word “bear”
is the average of these frequencies, which is 410.27 billion. For the nonword “fretto”, the
frequencies of the component letter bigrams are 103.31 billion (“fr”), 808.58 billion (“re”),
245.38 billion (“et”), 95.83 billion (“tt”) and 248.66 billion (“to”), for an average bigram
frequency of 300.35 billion.

Finally, we included two measures that tap into the semantic information associated
with a word or nonword in our analysis of the lexical decision data: semantic neighborhood
density and orthography-to-phonology consistency. Both measures are calculated on the
basis of distributed semantic representations. Traditionally, distributed semantic represen-
tations are most commonly obtained through count-based models. These models define word
vectors on the basis of co-occurrence matrices that encode information about the frequency
with which words occur in the same linguistic context (Landauer & Dumais, 1997; Lund
& Burgess, 1996; Pennington, Socher, & Manning, 2014). Recently, however, prediction-
based models have been used to generate semantic vectors as well. The continuous bag-of-
words (cbow) and continuous skip-gram models in word2vec (Mikolov, Sutskever, et al.,
2013; Mikolov, Chen, et al., 2013) are perhaps the most well-known implementations of the
prediction-based approach to distributional semantics. The word vectors obtained through
these models maximize the predicted probabilities of all words in the input data given the
context words (cbow) or the predicted probabilities of the context words given each word
in the input data (skip-gram).

Both count-based models and prediction-based models are able to generate high qual-
ity distributed semantic representations for words that are sufficiently frequent in the input
data. The reliability of word vectors, however, rapidly decreases for words that appear in
the input data a limited number of times. Furthermore, word vectors cannot be generated
for words that are not in the input data. To overcome this limitation, Bojanowski, Grave,
Joulin, and Mikolov (2017) proposed an extension of the word2vec skip-gram model that
is based on an idea introduced by Schütze (1993). This extension of the skip-gram model
is referred to as fastText.

The idea behind fastText is to take subword information into account. More specif-
ically, the representation of a word consists of the full word, as well as all component letter
3-grams to 6-grams. The word “bear”, for instance, is represented by the following se-
quences: “<bear>”, “<be”, “bea”, “ear”, “ar>”, “<bea”, “bear”, “ear>”, “<bear”, and
“bear>” (with “<” and “>” representing left and right word boundaries, respectively). Se-
mantic vectors are calculated for each word and for each letter n-gram. Word vectors are
defined as the sum of the semantic vectors for the sequences associated with words. The
word vector for the word “bear”, for instance, is the sum of the semantic vectors for the
sequences “<bear>”, “<be”, “bea”, “ear”, “ar>”, “<bea”, “bear”, “ear>”, “<bear”, and
“bear>”.



A WORD OR TWO ABOUT NONWORDS 9

The inclusion of subword information allows fastText to generate higher quality word
vectors for words with low frequencies in the input data, as well as distributed semantic
representations for out-of-vocabulary words. One advantage of this is that reliable semantic
representations can be obtained for morphologically rich languages such as Finnish. The
inclusion of subword information allows the model to exploit the orthographic overlap be-
tween members of inflectional paradigms. As a result, robust word vectors can be obtained
for low frequency inflectional variants that do not occur or occur only a limited number of
times in the input data.

Here, we leverage the ability of fastText to generate word vectors for out-of-
vocabulary words for a different purpose: the extraction of semantic vectors for nonwords.
Assuming a nonword is not present in the input data, a fastText model does not contain
a word vector corresponding to the whole word form of this nonword. Word vectors for the
component letters n-grams that appear in the input data, however, are available. Word vec-
tors for nonwords can be obtained by summing over the semantic vectors for the component
letter n-grams that are present in the input data. A word vector for a nonword represents
the semantic information that is associated with that nonword. We obtained word vec-
tors for the words and nonwords under investigation from a fastText model trained on
Wikipedia by Bojanowski et al. (2017).

The first semantic measure included in the analyses is semantic neighborhood density.
A number of previous studies defined semantic neighborhood density as the number of words
with a cosine similarity to the target word greater than a threshold value (see e.g., Pexman
& Hargreaves, 2008; Shaoul & Westbury, 2010). Consistent with the findings of Buchanan
et al. (2001), however, a semantic neighborhood density measure based on the average
distance between the target word and its k closest semantic neighbors provided maximum
explanatory power for the lexical decision data under investigation. Similar patterns of
results were obtained across a wide range of values (3 to 50) for the parameter k. A value
of 5, however, proved optimal in terms of predictive power. We therefore set k to 5 for the
calculation of the semantic neighborhood density measures for both words and nonwords.

The cosine similarity between two words w1 and w2 is the cosine of the angle between
the corresponding semantic vectors ~v1 and ~v2, which is mathematically defined as the dot
product of ~v1 and ~v2 divided by the product of the Euclidean norm of both vectors:

cos(θ) = ~v1 · ~v2
‖~v1‖‖~v2‖

=

k∑
i=1

v1iv2i√
k∑

i=1
v2

1i

√
k∑

i=1
v2

2i

(1)

where k is the length of the word vectors, which was set to 300 in the fastText model used
here.

Table 1 presents the closest semantic neighbors and their cosine similarity to the tar-
get words for two words (“bear” and “pepper”) and two nonwords (“fretto” and “guntiors”).
The semantic neighborhood density for the word “bear” is the average cosine similarity be-
tween “bear” and its 5 closest semantic neighbors “bears” (cosine similarity: 0.67), grizzly
(0.63), paw (0.56), lion (0.55), and badger (0.54), which is 0.59. Similarly, the semantic
neighborhood density for the word “pepper” is the average cosine similarity between “pep-
per” and its 5 closest semantic neighbors “peppers” (0.74), “ginger” (0.64), “garlic” (0.63),
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Table 1
Closest semantic neighbors with cosine similarities for the words “bear” and “pepper” and
the nonwords “fretto” and “guntiors”.
word neighbors
bear bears (0.67), grizzly (0.63), paw (0.56), lion (0.55), badger (0.54), wolf (0.51),

beaver (0.51), moose (0.50), teddy (0.50), bobcat (0.49), raccoon (0.48), bearing (0.48),
elk (0.48), dog (0.47), paws (0.47)

pepper peppers (0.74), ginger (0.64), garlic (0.63), onions (0.63), cloves (0.61), chilli (0.60),
beans (0.60), peanut (0.59), peanuts (0.59), spicy (0.59), sauce (0.59), bean (0.59),
onion (0.59), pickles (0.58), eggplants (0.58)

nonword neighbors
fretto fretting (0.60), frets (0.57), fret (0.57), tempo (0.50), cello (0.50), strings (0.49),

strumming (0.48), oboe (0.48), bassoon (0.47), guitars (0.47), chords (0.47), wood-
wind (0.46), piano (0.46), harp (0.46), flutes (0.45)

guntiors pushers (0.45), hassling (0.42), vandals (0.41), blindly (0.41), trolling (0.41),
trolls (0.40), hounding (0.40), thread (0.40), butting (0.40), users (0.40), ass-
holes (0.40), folks (0.39), bullies (0.39)

“onions” (0.63), and “cloves” (0.61), which is 0.65. The word “pepper” thus lives in a
somewhat denser semantic neighborhood than the word “bear”.

The closest semantic neighbors for the nonword “fretto” are inflectional variants of
the word “fret”, which, in addition to a constant state of anxiety, refers to a ridge on
the fingerboard of stringed musical instruments. Unsurprisingly, therefore, other semantic
neighbors of the nonword “fretto” include a variety of musical instruments and musical
terminology. The semantic neighborhood density for the nonword “fretto” is the average
cosine similarity between “fretto” and its 5 closest semantic neighbors “fretting” (0.60),
“frets” (0.57), “fret” (0.57), “tempo” (0.50), and “cello” (0.50), which is 0.55. The semantic
neighbors of the nonword “fretto” may give the impression that semantic neighborhood
density is strongly correlated with component n-gram frequencies. It is therefore noteworthy
that the correlation between semantic neighborhood density and mean bigram frequency is
limited for both words (r = 0.09) and nonwords (r = 0.13).

The nonword “guntiors” lives in a less-than-pleasant semantic neighborhood, with
neighbors such as “pushers” (people who sell illegal drugs), “vandals”, “assholes”, and
“bullies”. Provided that we “shall know a word by the company it keeps” (Firth, 1957),
our first impression of “guntiors” thus is not the most positive. As before, the semantic
neighborhood density for the nonword “guntiors” is the average cosine similarity between
“guntiors” and its 5 closest semantic neighbors “pushers” (0.45), “hassling” (0.42), “vandals”
(0.41), “blindly” (0.41), “trolling” (0.41), which is 0.42. Henceforth, we refer to the semantic
neighborhood density measure through the acronym SND.

The second semantic variable under investigation is based on a measure of
orthography-to-semantics consistency that was coined by Marelli et al. (2015) (cf. Marelli
& Amenta, 2018). Marelli and Amenta (2018) reported effects of orthography-to-semantics
consistency (henceforth osc) on lexical decision latencies and word naming latencies. We
define the osc of a word w as the frequency-weighted average semantic similarity between
a word and its k closest orthographic neighbors:
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OSCw =
∑k

i=1 cos(~w, ~ni)
k

(2)

where k is the number of orthographic neighbors of word w taken into consideration and
cos(~w, ~ni) is the cosine similarity between word w and word i (see Equation 1).

The set of orthographic neighbors of a word can be defined in a number of ways.
Marelli and Amenta (2018) found that defining k as the set of words that embed word w
provided optimal explanatory power for the lexical decision latencies for a random subset of
1, 821 words in the blp. A majority of the nonwords in the blp, however, is not embedded
in real words. A similar definition of the set of orthographic neighbors thus is not feasible for
the nonwords under investigation. Marelli and Amenta (2018) found a measure of osc based
on the k closest orthographic neighbors to have significant explanatory power for the lexical
decision latencies in the blp as well. Here, we therefore defined the set of orthographic
neighbors of a word or nonword as the k words in the set of 18,547 under investigation with
the shortest Levenshtein distance to the target word. We then calculated the osc of a word
on the basis of the frequency counts and semantic vectors described above.

A series of multiple regression models including the other predictors under investi-
gation revealed similar patterns of results for a wide range of values for the parameter k.
As was the case for the semantic neighborhood density measure, however, a value of 5
provided maximum explanatory power. We therefore set k to 5 for the calculation of the
orthography-to-consistency measures for both words and nonwords. Note that Marelli and
Amenta (2018) used a frequency-weighted version of osc. For the current data, however, a
frequency-weighted osc measure proved substantially less powerful as compared to the osc
measure described above. Prior to analysis, we log-transformed the osc measure to remove
a rightward skew from the distribution of osc values. Thus, we henceforth refer to the osc
measure as (log) OSC.

For each predictor, we removed outliers further than 2.5 standard deviations from
the predictor mean prior to analysis. For real words, this led to the exclusion of 794 items
(4.28% of the data). More precisely, we removed 136 outliers for (log) frequency (0.73%),
131 outliers for length (0.71%), 133 outliers for (log) OLD20 (0.72%), 140 outliers for mean
bigram frequency (0.75%), 219 outliers for SND (1.18%), and 136 outliers for (log) OSC
(0.73%). For nonwords, the exclusion of predictor outliers resulted in the removal of 1,240
items prior to analysis (4.58% of the data). For (log) frequency we removed 9 predictor
outliers (0.03%), whereas we removed 204 outliers for length (0.75%), 141 outliers for (log)
OLD20 (0.52%), 228 for mean bigram frequency (0.84%), 517 outliers for SND (1.91%) and
288 outliers for (log) OSC (1.06%), respectively. The results of pamm models fit to the full
data set were similar to the results of the pamm analyses for words and nonwords reported
here. The removal of predictor outliers thus had a marginal influence on the reported
results.

Table 2 presents the range and adjusted range (after outlier removal) for the lexical
predictors under investigation for both words and nonwords. Furthermore, it provides the
mean, median, and standard deviation of each predictor after outlier removal. A compar-
ison of the descriptive statistics of the lexical predictors for word and nonwords provides
further information about the distributional properties of the stimuli. As can be seen in
Table 2, the words and nonwords in the current data are closely matched for length, mean
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Table 2
Summary of the predictors (log) frequency, length, mean bigram frequency, OLD20, SND,
and (log) OSC for words and nonwords. Range is the original range of the predictor. Ad-
justed range is the range after removing predictor outliers. Mean, median and sd are the
means, medians and standard deviations after outlier removal.

predictor range adj. range mean median sd
words
(log) frequency 11.56 - 23.95 12.76 - 23.16 17.92 17.85 2.02
length 2.00 - 13.00 3.00 - 10.00 6.36 6.00 1.53
mean bigram frequency 2.07 - 878.77 7.21 - 517.22 261.16 259.62 99.09
(log) OLD20 0.00 - 1.79 0.00 - 1.52 0.75 0.67 0.30
SND 0.32 - 0.93 0.42 - 0.82 0.62 0.62 0.08
(log) OSC -2.73 - -0.20 -2.13 - -0.42 -1.26 -1.24 0.33
nonwords
(log) frequency 0.00 - 20.56 0.00 - 18.82 8.15 8.83 4.25
length 2.00 - 13.00 3.00 - 10.00 6.61 7.00 1.51
mean bigram frequency 0.18 - 792.68 5.86 - 500.32 251.12 250.16 95.94
(log) OLD20 0.00 - 1.86 0.18 - 1.61 0.88 0.88 0.29
SND 0.28 - 0.76 0.30 - 0.62 0.45 0.45 0.06
(log) OSC -3.51 - -0.38 -2.24 - -0.58 -1.41 -1.40 0.31

bigram frequency, orthographic neighborhood density, and - perhaps more surprisingly, for
orthography-to-semantics consistency.

As expected, however, the average frequency of words (mean (log) frequency: 17.92) is
higher than the average frequency of nonwords (mean (log) frequency: 8.15). Furthermore,
the standard deviation is much larger for the nonword frequency distribution (4.25) than
for the word frequency distribution (2.02). To gain more insight into the distributional
differences between words and nonwords, the frequency distributions for words (solid line)
and nonwords (dashed line) before outlier removal are plotted in the left panel of Figure 1.
There is some overlap between both distributions. The Google frequency of the low fre-
quency word “perjure” ((log) frequency: 12.58), for instance, is lower than that of the high
frequency nonword “torb” ((log) frequency: 13.85). Nonetheless, the bulk of the probability
mass is separated relatively clearly for words and nonwords.

Interestingly, the frequency distribution for nonwords shows a tendency towards mul-
timodality. This could indicate that the nonwords in the blp consist of different subsets
with separate frequency distributions. This is intriguing, given the fact that all nonwords in
the blp were derived from real words following the same principles. As a result, the length,
mean bigram frequency, and orthographic neighborhood density of nonwords closely resem-
ble those of real words, as do the parts-of-speech tags of the nonwords. A visual inspection
of the nonwords across the frequency range does not provide a clear reason to expect multi-
modality in the nonword frequency distribution either. The tendency towards multimodality
in the nonword frequency distribution is modest and may not replicate to a different set of
nonwords generated with the same procedure. Nonetheless, it is an interesting observation
that we briefly return to in the discussion section of this paper.
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Figure 1 . Probability density function of frequency (left panel) and semantic neighborhood
density (right panel) for words (solid lines) and nonwords (dashed lines) before outlier
removal.

On average, the semantic neighborhood density is higher for words 0.62 than for
nonwords 0.45 as well. In addition, the standard deviation is somewhat higher for words
0.08 than for nonwords 0.06. The right panel of Figure 1 presents the distribution of SND for
words (solid line) and nonwords (dashed line). Both distributions are close to normal. The
distribution for nonwords, however, is shifted to the left as compared to the distribution for
words. On average, nonwords thus live in sparser semantic neighborhoods than do words.

It is important to clarify that we do not wish to suggest that the location of a nonword
in semantic space is stored and that this location is accessed when a nonword is encoun-
tered. Instead, we propose that the presentation of a nonword leads to inexorable activation
patterns not only in the orthographic and phonological systems, but also in the semantic
system (cf. Cassani, Chuang, & Baayen, 2019; Chuang et al., 2019). The semantic neigh-
borhood density measure gauges how similar the activation pattern in the semantic system
for a nonword is to the activation patterns in the semantic systems associated with real
words. When we talk about the location of a nonword in semantic space, we use the word
“location” as a convenient geographical metaphor for an impromptu activation pattern in
the semantic system rather than as a reference to a pre-existing locus in semantic space.

Analysis

We analyzed the lexical decision latencies for words and non-words in the blp with
a novel technique for time-to-event analysis: the piece-wise exponential additive mixed
model (henceforth pamm; Bender & Scheipl, 2018; Bender, Groll, & Scheipl, 2018; Bender,
Scheipl, et al., 2018). As noted above, time-to-event analyses model the time until an event
of interest occurs. The event of interest in the lexical decision task is the “yes” or “no”
response to a word or non-word stimulus. The dependent variable is the instantaneous
probability of a response as it evolves over time.

The application of pamms to linguistic response time data is novel (cf. Hendrix,
2018; Hendrix & Sun, 2019; Hendrix, Ramscar, & Baayen, 2019). We therefore introduce
the pamm in more detail below. First, we present two functions of interest in time-to-
event analysis: the survival function and the hazard function. Next, we discuss the data
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pre-processing that is necessary prior to a pamm analysis. We furthermore provide an
introduction to the pamm model and its conceptual and statistical properties. We end this
section with a description of the pamms fitted to the lexical decision data.

Functions of interest in time-to-event analysis

The probability density function describes the relative likelihood of values for a con-
tinuous random variable. Visualizations of the probability density function provide infor-
mation about the distributional properties of a response variable. The probability density
function for the response times (i.e., lexical decision latencies) to the words (solid line) and
nonwords (dashed line) under investigation is presented in the left panel of Figure 2. As
can be seen in the left panel of Figure 2, the distributions of response times for both words
and nonwords have a long right tail, as is common in linguistic response time distributions.
As compared to the response time distribution for words, the response time distribution for
nonwords is shifted to the right. This shift reflects the difference in average response time
for words (648.22 ms) and nonwords (666.25 ms) in the data.

The integral of the probability density function is the cumulative distribution function
F (t). For a given time t, the cumulative distribution function describes the probability that
the response time T is smaller than or equal to t:

F (t) =
∫ t

−∞
f(x)dx = P (T ≤ t) (3)

The central function in time-to-event analysis, the survival function S(t), is closely
related to the cumulative distribution function F (t):

S(t) = 1− F (t) = P (T > t). (4)

The survival function describes the probability of the time at which the event of
interest occurs being greater than a given time t. For the response times in a lexical
decision experiment, the survival function thus describes the probability that participants
did not yet respond to a word or nonword stimulus at time t.
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Figure 2 . Probability density function (left panel) and survival function (right panel) for
the words (solid lines) and nonwords (dashed lines) in the British Lexicon Project.
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The survival function for the words (solid line) and nonwords (dashed line) under
investigation is presented in the right panel of Figure 2. Before the first response comes in,
the probability of “survival” is 1. As responses start coming in, the probability of survival
decreases. The probability of “survival” beyond 1000 ms after stimulus onset is extremely
low for both words (0.0041) and nonwords (0.0072). As before, the rightward shift of the
survival function for nonwords as compared to the survival function for words reflects the
fact that response times for nonwords are, on average, somewhat longer than response times
for words.

The conceptual objective of time-to-event analysis is to estimate the time until an
event of interest occurs. The mathematical properties of the survival function, however,
are less than optimal for modeling purposes. Time-to-event analysis techniques therefore
typically model the time until an event of interest occurs through a closely related function:
the hazard function. The hazard function provides the instantaneous probability that the
event of interest occurs at time t, given that it did not occur prior to time t. The hazard
function is defined as:

λ(t) = lim
dt→0

P (t ≤ T ≤ t+ d | T ≥ t)
dt

= − d

dt
log(S(t)). (5)

As demonstrated in the vignette for the pammtools package for the statistical soft-
ware r (R Core Team, 2018), pamms provide accurate and stable estimates of the hazard
function (Bender & Scheipl, 2018). Figure 3 presents the log-transformed hazard function
with point-wise confidence intervals for the words (left panel) and nonwords (right panel)
under investigation as estimated by a pamm. For words, the instantaneous probability of
a response rapidly increases between 500 and 560 ms after stimulus onset. For nonwords,
the increase in instantaneous probability of a response occurs between 515 and 585 ms
after stimulus onset. After the initial rapid increase, the instantaneous probability of a
response remains high until 900 ms after stimulus onset, at which point in time 98.49%
of the words and 97.71% of the nonwords have been responded to. The shape of the haz-
ard functions for words and nonwords is typical for response times distributions in lexical
decision experiments (cf. Hendrix, 2018).
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Figure 3 . Log-transformed instantaneous hazard function (f(t)) with point-wise confidence
intervals for the words (left panel) and nonwords (right panel) in the British Lexicon Project
as modeled through a piece-wise exponential additive mixed model.
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Data pre-processing

The response variable in the lexical decision data from the blp is the average reaction
time for a word across participants. In standard linear or non-linear regression models the
dependent variable is this reaction time. By contrast, the dependent variable in piece-wise
exponential additive mixed models (pamms) is whether or not a stimulus was responded to
at time t. To be able to fit a pamm to the lexical decision data a transformation of the
data is therefore required. More specifically, the data need to be presented to the model
in a format that Bender and Scheipl (2018) refer to as piece-wise exponential data. When
the piece-wise exponential data format is used piece-wise exponential models are essentially
Poisson regression models (M. Friedman, 1982). The piece-wise exponential data format
therefore allows for the estimation of piece-wise exponential models in regression frameworks
such as the generalized additive mixed model (gamm).

The piece-wise exponential data format splits the time each stimulus is “at risk” of
being responded to into J intervals. The intervals (kj−1, kj ], j = 1 . . . J are defined by the
cut points κ0 < . . . < κJ . For each interval j, the hazard function is assumed to be constant.
This assumption explains the name piece-wise exponential model: the (log-transformed)
hazard function of an exponential distribution is constant over time. Technically, the hazard
function in piece-wise exponential models is thus defined as:

λ(t) = λ(tj), ∀ t ∈ (kj−1, kj ] (6)

where tj typically equals kj in the pamm (i.e., the hazard function is estimated for the
end-points of each interval).

The choice of the cut points and the number of intervals is arbitrary. The arbitrary
selection of cut points and intervals was a limitation for previous implementations of piece-
wise exponential models (pems) in the context of the generalized linear model. Too few cut
points would lead to crude and inaccurate model estimates. Conversely, too many cut points
would result in overfitting and unstable estimates (Demarqui, Loschi, & Colosimo, 2008).
It is important to note that piece-wise exponential models do not suffer from this limitation
in the context of the generalized additive mixed model (gamm). The implementation of
gamms in the mgcv package for r prevent overfitting through penalization of wiggliness (see
Wood, 2011, 2017, for details). As a result, pamms generate accurate and stable estimates
of the hazard function as long as a sufficiently large number of cut points is used.

One option for defining cut points is to evenly spread out the cut points over the time
at which stimuli are “at risk” of being responded to. Here, we instead opted for cut points
at the quantiles of the response time distributions, excluding cut points at the extreme
ends of the response time distributions. For words, we did not include cut points prior
to 500 ms, because a mere 94 words (0.53%) were responded to earlier than 500 ms after
stimulus onset. Similarly, we did not include cut points after 975 ms, as no more than
102 words (0.57%) had average reaction times greater than 975 ms. For nonwords, no cut
points were included prior to 515 ms (89 nonwords; 0.34%) or after 1060 ms (101 nonwords;
0.39%). For the remaining part of the response time distributions for words (500 - 975
ms) and nonwords (515-1060 ms), we included cut points at 51 quantiles (0 to 1 in steps
of 0.02) of the response time distribution. Cut points based on quantiles of the response
time distributions have the advantage that more accurate model estimates are obtained for
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dense areas of the distributions.
We transformed the data to the piece-wise exponential data format with the

split_data() function of the pammtools package (Bender & Scheipl, 2018). An exam-
ple of the representation of the lexical decision data for the word “bear” and the nonword
“fretto” in the piece-wise exponential data format is presented in Table 3. For each stimu-
lus, the piece-wise exponential data format contains a separate row for each interval. For
each row, the start (tstart) and end point (tend) of the interval are defined. To estimate the
development of the hazard function over time, the end point of the intervals is included as
a predictor in pamms. The column status contains a binary variable that indicates whether
(1) or not (0) the word was responded to in that interval. The status, henceforth referred
to as δ, is the dependent variable in pamms.

Table 3
Piece-wise exponential data format for the word “bear” and the nonword “fretto”.

word tstart tend interval offset status
bear 0.00 500.19 (0.00,500.19] 6.21 0
bear 500.19 519.16 (500.19,519.16] 2.94 0
bear 519.16 529.39 (519.16,529.39] 2.33 0
. . . . . . . . . . . . . . . . . .
bear 558.24 563.03 (558.24,563.03] 1.56 0
bear 563.03 567.03 (563.03,567.03] 1.39 0
bear 567.03 571.15 (567.03,571.15] 0.83 1
nonword tstart tend interval offset status
fretto 0.00 515.12 (0.00,515.12] 6.24 0
fretto 515.12 539.21 (515.12,539.21] 3.18 0
fretto 539.21 550.12 (539.21,550.12] 2.39 0
. . . . . . . . . . . . . . . . . .
fretto 656.27 660.42 (656.27,660.42] 1.42 0
fretto 660.42 664.87 (660.42,664.87] 1.49 0
fretto 664.87 669.00 (664.87,669.00] 0.17 1

Finally, the piece-wise exponential data format includes an offset (offset). For inter-
vals in which a stimulus was not responded to, the offset is equivalent to the log-transformed
duration of the interval. The first interval in which “bear” is at risk has a duration of
500 ms. The word “bear” was not responded to in this interval. The offset, therefore,
is log(500) = 6.21. For intervals in which a stimulus was responded to, the offset is the
log-transformed duration of the period during which the stimulus was “at risk” of being re-
sponded to in the current interval. The word “bear” was responded to in the (567.03,571.15]
interval, at 569.33 ms after stimulus onset. In this interval, it was at risk of being re-
sponded to from 567.03 ms to 569.33 ms, for a duration of 2.30 ms. The offset, therefore, is
log(2.56) = 0.94. The offset provides the pamm with information about the exact response
time for each stimulus.

It is noteworthy that in the context of pamms stimuli with extreme response times
do not need to be excluded prior to analysis. The first interval starts at 0 ms after stimulus
onset. Words or nonwords with average response times before the first cut point therefore
remain part of the analysis. The exact response times for words or nonwords with average
response times after the last cut point are not available to the model. The fact that these
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stimuli were not responded to prior to the last cut point, however, is. The absence of a
response prior to the last cut point provides the model with valuable information about the
nature of words or nonwords that are particularly hard to respond to.

Piece-wise exponential additive mixed models (pamms)

The piece-wise exponential additive mixed model (pamm; Bender & Scheipl, 2018;
Bender, Groll, & Scheipl, 2018; Bender, Scheipl, et al., 2018) is a semi-parametric extension
of the piece-wise exponential model (pem; M. Friedman, 1982) in the framework of gener-
alized additive mixed models (gamm; Wood, 2011, 2017). The pamm is able to fit a large
class of models for time-to-event analysis with the full flexibility of gamms. In this section,
we introduce the pamm in more detail. This introduction is based on the description of
the pamm in Bender and Scheipl (2018), Bender, Groll, and Scheipl (2018), and Bender,
Scheipl, et al. (2018). For more information, we refer the interested reader to these papers.

Above, we introduced the piece-wise exponential data format, which splits the data
into a number of intervals J . For each stimulus i, the response status δij is encoded for each
interval j ∈ 1, . . . , J . Given the predictor values xi, the pem defines the hazard function
λ(t|xi) at all time points t in the interval j := (κj−1, κj ] as:

λ(t|xi) = λj exp(x>i β), ∀ t ∈ (κj−1, κj ] (7)

where λj is the baseline hazard for time interval j and the vector β contains the regression
coefficients for the predictors with values xi for stimulus i.

The hazard function is fitted in a piece-wise fashion for each interval. Fitting the haz-
ard function in a piece-wise fashion allows for flexible time-to-event models, while avoiding
a number of technical estimation problems. The predictor term x>i β, however, is constant.
Furthermore, the functional shape of predictor effects within an interval is restricted (i.e.,
predictor effects are linear). The pamm overcomes these limitations of the pem and allows
for non-linear predictor effects that vary non-linearly as a function of time. In addition,
the pamm allows for the inclusion of random effects. Given the predictors values xi for
stimulus i, the pamm defines the hazard function λ(t|xi) at all time points t in the interval
j := (κj−1, κj ] as:

λ(t|xi) = λ0(tj) exp
( p∑

k=1
fk(xi,k, tj) + b`i

)
, ∀ t ∈ (κj−1, κj ] (8)

where λ0(tj) is the baseline hazard for time interval j, fk(xi,k, tj) are smooth functions for
predictor k ∈ 1, . . . , p for each time point t in the interval j, and b`i

are random intercepts
associated with group ` ∈ 1, . . . , L to which stimulus i belongs.

The smooth functions fk(xi,k, tj) are estimated through the weighted sum of a set of
basis functions (cf. Baayen, Vasishth, Kliegl, & Bates, 2017). Together, these basis functions
allow pamms to model non-linear predictor effects without a pre-defined functional shape.
Practically, non-linear, non-linear time-varying predictor effects can be fitted through tensor
product interactions between time and the predictor (see Wood, 2011, for an introduction to
tensor product interactions in the context of gamms). Note that although predictor effects
are modeled through smooth functions, the estimates of these effects remains piece-wise
constant, as is the case for the baseline hazard λ0(tj).
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In Equation 8, random effects are limited to the random intercepts b`i
. As noted by

Bender and Scheipl (2018), more complex random effect structures for nested or crossed
groups can be accommodated in the gamm framework as well. In the analyses reported
here, however, no random effect terms are included. We therefore refrain from a more
detailed discussion of random effects in the pamm. Similarly, we do not discuss the option
to include effects of time-varying predictors (i.e., predictors with predictor values that vary
as a function of time) in the pamm, as all predictors in the current analyses are constant
over time.

The formulation of the pamm in Equation 8 is multiplicative in nature. Using
log(ab) = log(a) + log(b), we can reformulate Equation 8 as an additive model as follows:

log(λ(t|xi)) = log λ0(tj) +
p∑

k=1
fk(xi,k, tj) + b`i

, ∀ t ∈ (κj−1, κj ]. (9)

By default, the implementation of the pamm in the mgcv package works with the
additive representation of the pamm in Equation 9. The reported effects of the predictors
on the hazard function are therefore on the log-scale. If so desired, however, model estimates
can be converted to hazard rates on the original scale or to survival probabilities using the
post-processing functions provided by the pammtools package (Bender & Scheipl, 2018).

Fitted models

We fitted piece-wise exponential additive mixed models (pamms) with a Poisson dis-
tribution (family = poisson()) to the representation of the response times for words and
nonwords in the piece-wise exponential data format described above using the mgcv pack-
age for r (Wood, 2011, 2017). The objective of the pamms reported here is to model the
response status δ (0 or 1) as a function of time and the lexical predictors (log) frequency,
length, mean bigram frequency, (log) OLD20, SND, and (log) OSC. We estimated the base-
line hazard through a smooth of time (i.e., the end-point of the intervals). Time-constant
predictor effects were fit through smooths for the lexical predictors, whereas we allowed for
time-varying predictor effects by including tensor product interactions between time and
predictor in the model, as modeled through ti() terms (see Wood, 2017, for more de-
tails). To ensure that the results of the models remained interpretable, we limited predictor
smooths (k = 4) and time by predictor interactions (k = c(4,4)) to fourth order non-
linearities. No restrictions were placed on the smooth for time. Although it is technically
possible to model three-way interactions between time and two predictors in the pamm, we
did not include such three-way interactions in the reported models to retain interpretability
of the results.1

We conclude this section with a note on dependencies between predictors. The pres-
ence of linear dependencies between predictors in a linear regression model is referred to as
multicollinearity. Multicollinearity is problematic, because it can lead to estimates of predic-
tor effects that are qualitatively and quantitatively inaccurate (L. Friedman & Wall, 2005;

1A post-hoc analysis, however, revealed a significant three-way interaction between time, (log) frequency,
and (log) OSC for words (χ2 = 38.859, p < 0.001) and - to a lesser extent - for nonwords (χ2 = 6.446,
p = 0.056). During the later stages of the response time window, the reported effects of (log) frequency are
most prominent (words) or exclusively present (nonwords) for high values of (log) OSC.
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Wurm & Fisicaro, 2014; Tomaschek, Hendrix, & Baayen, 2018). Linear dependencies be-
tween predictors can be described using pairwise correlations. Strong pairwise correlations
between predictors can be problematic, because they increase the likelihood of suppression
(i.e., a change in the sign of a predictor effect, see Wurm & Fisicaro, 2014). In the situation
where rY X1 > rY X2 > 0, the sign of the coefficient for X2 in a linear regression model that
regresses Y on X1 and X2 changes when the pairwise correlation rX1X2 between predictors
X1 and X2 exceeds rY X2/rY X1 (L. Friedman & Wall, 2005).

Pairwise Pearson correlations between the predictors in the current analyses are shown
in Table 4. For words, pairwise correlations between predictors are modest, with the excep-
tion of the pairwise correlations between length and (log) OLD20 (r = 0.782). For nonwords,
the situation is more complicated. In addition to a strong correlation between length and
(log) OLD20 (r = 0.787), strong pairwise correlations exist between (log) frequency and
length (r = −0.785) and between (log) frequency and (log) OLD20 (r = −0.820). The
Google frequency of a nonword thus is strongly correlated with its length and the density
of its orthographic neighborhood. More frequent nonwords are shorter and have more or-
thographic neighbors. The pairwise correlation between SND and (log) OSC is substantial
as well (r = 0.637). Furthermore, medium strength correlations exist between length on the
one hand and SND (r = 0.357) and (log) OSC (r = 0.319) on the other hand. Estimates of
the collinearity across the full set of predictors confirm that potentially harmful collinearity
is present in the data. The condition number κ (Belsley, Kuh, & Welsch, 1980) is high for
the data set for words (κ = 42.813), as well as for the data set for nonwords (κ = 50.026).

The analogue of multicollinearity in non-linear regression models is concurvity (Buja,
Hastie, & Tibshirani, 1989). Concurvity refers to the presence of non-linear dependencies

Table 4
Pairwise Pearson correlations of lexical-distributional variables for words and nonwords.
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words
(log) frequency - -0.325 0.047 -0.280 0.020 -0.216
length -0.325 - 0.250 0.782 0.222 0.215
mean bigram frequency 0.047 0.250 - -0.068 0.093 0.043
(log) OLD20 -0.280 0.782 -0.068 - 0.091 -0.009
SND 0.020 0.222 0.093 0.091 - 0.285
(log) OSC -0.216 0.215 0.043 -0.009 0.285 -
nonwords
(log) frequency - -0.785 -0.017 -0.820 -0.115 -0.106
length -0.785 - 0.298 0.787 0.357 0.319
mean bigram frequency -0.017 0.298 - -0.043 0.141 0.124
(log) OLD20 -0.820 0.787 -0.043 - 0.077 -0.014
SND -0.115 0.357 0.141 0.077 - 0.637
(log) OSC -0.106 0.319 0.124 -0.014 0.637 -
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between predictors. In the context of generalized additive models, concurvity is present
when a smooth or tensor product interaction can be captured by other smooths or tensor
product interactions in the model (Amodio, Aria, & D’Ambrosio, 2014). As is the case for
multicollinearity in linear regression models, concurvity can lead to inaccurate estimates
of predictor effects. Furthermore, model estimates may be unstable in the presence of
concurvity. To ensure that the smooth and tensor product interaction estimates reported
here are robust, we therefore inspect the amount of concurvity in pamms.

The mgcv package provides the concurvity() function, which estimates the degree
of concurvity in a generalized additive model (Wood, 2017). The concurvity index for a
model term ranges between 0 and 1. A concurvity index of 1 indicates that a model term
can entirely be captured by the other terms in the model. Table 5 presents the concurvity
indices for the smooths and tensor product interactions in the pamms fitted to the piece-
wise exponential data for the lexical decision latencies for words and nonwords (i.e, the
“estimate” measure provided by the concurvity() function of the mgcv package).

As can be seen in Table 5 some concurvity is present in the pamms fitted to the
lexical decision data. Consistent with the collinearity between length and (log) OLD20, a
substantial part of the main effect smooths and tensor product interactions for length (main
effect smooth: 0.738, tensor product interaction with time: 0.525) and (log) OLD20 (main
effect smooth: 0.699, tensor product interaction with time: 0.553) in the model for words
can be captured by the other terms in the model. The concurvity estimates for length (main
effect smooth: 0.823, tensor product interaction with time: 0.636) and (log) OLD20 (main
effect smooth: 0.796, tensor product interaction with time: 0.659) were relatively high for
the pamm fit to the nonwords as well.

Table 5
Concurvity estimates for the smooths and tensor product interactions in the pamms fitted
to the lexical decision data for words and nonwords.

model term words nonwords
parametric terms
intercept 0.125 0.067
smooths
time 0.254 0.182
(log) frequency 0.335 0.691
length 0.738 0.823
mean bigram frequency 0.288 0.331
OLD20 0.699 0.796
SND 0.167 0.476
(log) OSC 0.260 0.478
tensor product interactions
time by (log) frequency 0.294 0.505
time by length 0.525 0.636
time by mean bigram frequency 0.257 0.270
time by OLD20 0.553 0.659
time by SND 0.120 0.385
time by (log) OSC 0.218 0.399
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Concurvity for (log) frequency was present in the model fit to the nonwords as well
(main effect smooth: 0.691, tensor product interaction with time: 0.505). The concurvity
for (log) frequency, however, was more moderate as compared to the collinearity described
above. The effect of (log) frequency can therefore be separated somewhat more easily from
the effects of the other predictors in a pamm as compared to a multiple linear regression
model. The same holds true for the effects of the semantic predictors. The concurvity
estimates for both SND (main effect smooth: 0.476, tensor product interaction with time:
0.385) and (log) OSC (main effect smooth: 0.478, tensor product interaction with time:
0.399) were modest.

While some concurvity is present in both models, the concurvity indices for the pamms
fit to the words and the nonwords are unlikely to lead to unstable model estimates or
uninterpretable effects. Nonetheless, we verified the robustness of the reported results
through two post-hoc analyses. First, in response to a request by a reviewer, we fit pamms
without (log) OLD20 to both data sets. For words, this led to a strong reduction in the
concurvity for length (main effect smooth: 0.246, tensor product interaction with time:
0.159. For nonwords, we also observed a reduction in concurvity, albeit a less dramatic
one. Moderate concurvity remained present for length (main effect smooth: 0.708, tensor
product interaction with time: 0.487) and (log) frequency (main effect smooth: 0.628, tensor
product interaction with time: 0.452), presumably due to the strong correlation between
both predictors. The effects of (log) frequency, SND, and (log) OSC in the pamms in which
we omitted (log) OLD20 as a predictor were qualitatively and quantitatively similar to the
effects in the full models reported below.

Second, we applied a principal components analysis (henceforth pca) with varimax
rotation to the set of predictors for both words and nonwords. The varimax rotation
provided a set of orthogonal rotated components that mapped onto individual predictors.
Crucially, the predictors of interest in the nonword data set were uniquely represented by
dedicated principal components. The fourth rotated component represented SND (RC4,
loading: 0.934, all other loadings ≤ 0.334), whereas the second rotated component encoded
(log) OSC (loading: 0.937, all other loadings ≤ 0.338). The frequency of a nonword was
mapped onto the fifth rotated component (loading: 0.432, all other loadings ≤ 0.112). We
entered the rotated components into a pamm fit to the lexical decision data. The effects
of (log) frequency, SND, and (log) OSC were qualitatively similar to the results reported
below. The post-hoc analyses thus indicate that the effects reported here are statistically
robust, despite the presence of substantial collinearity in the data sets.

Results

Overall model fit

The results for the pamm fit to the lexical decision data for words are presented in
Table 6. Table 7 presents the results for the pamm fit to the lexical decision data for
nonwords. For the parametric terms in each model, we provide the β estimates and the
corresponding standard errors, z-values, and p-values. For the smooth terms the reference
degrees of freedom, the estimated degrees of freedom (edf), the χ2 value and the p-value are
provided. The smooth terms in a generalized additive model (gam) are allotted degrees of
freedom by the basis functions (cf. Baayen et al., 2017). Under the penalization performed
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Table 6
Results for a pamm fit to the lexical decision latencies for words. Provided are β coefficients,
standard errors (S.E.) and z-values for parametric terms, and estimated degrees of freedom
(edf), reference degrees of freedom (ref. df) and χ2-values for smooth terms

parametric terms β S.E. z-value p-value
Intercept -6.171 0.027 -228.087 < 0.001
smooth terms edf ref. df χ2-value p-value
s(time) 8.992 9.000 5774.851 < 0.001
s((log) frequency) 2.917 2.983 4276.916 < 0.001
ti(time, (log) frequency) 7.657 8.363 1486.745 < 0.001
s(length) 2.800 2.959 8.495 0.023
s(time, length) 5.252 6.096 151.522 < 0.001
s(mean bigram frequency) 2.780 2.959 138.911 < 0.001
ti(time, mean bigram frequency) 6.859 8.015 17.785 0.022
s(OLD20 ) 2.990 2.999 91.937 < 0.001
ti(time, OLD20 ) 6.943 7.780 49.026 < 0.001
s(SND) 2.402 2.758 290.530 < 0.001
ti(time, SND) 2.135 2.734 58.160 < 0.001
s((log) OSC ) 1.459 1.765 207.936 < 0.001
ti(time, (log) OSC ) 2.802 3.249 28.523 < 0.001

by a gam, however, not all available degrees of freedom are (necessarily) used. The number
of estimated degrees of freedom is a measure of the degrees of freedom that are actually
used by a smooth term, and therefore of the degree of non-linearity of an effect (Sóskuthy,
2017; Baayen et al., 2017). Below, we discuss the results for each of the parametric and
non-parametric terms in the both models in a sequential fashion.

Table 7
Results for a pamm fit to the lexical decision latencies for nonwords. Provided are β coeffi-
cients, standard errors (S.E.) and z-values for parametric terms, and estimated degrees of
freedom (edf), reference degrees of freedom (ref. df) and χ2-values for smooth terms

parametric terms β S.E. z-value p-value
Intercept -5.804 0.014 -417.128 < 0.001
smooth terms edf ref. df χ2-value p-value
s(time) 8.993 9.000 9834.507 < 0.001
s((log) frequency) 2.947 2.997 2300.981 < 0.001
ti(time, (log) frequency) 8.104 8.753 288.363 < 0.001
s(length) 1.028 1.054 3340.491 < 0.001
s(time, length) 7.735 8.443 1286.548 < 0.001
s(mean bigram frequency) 2.038 2.458 40.891 < 0.001
ti(time, mean bigram frequency) 1.038 1.075 4.793 0.033
s(OLD20 ) 2.994 3.000 793.965 < 0.001
ti(time, OLD20 ) 7.943 8.635 607.660 < 0.001
s(SND) 2.411 2.753 120.505 < 0.001
ti(time, SND) 4.602 5.699 21.917 0.001
s((log) OSC ) 2.387 2.726 329.374 < 0.001
ti(time, (log) OSC ) 8.106 8.689 70.197 < 0.001
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Baseline hazard

Although all model terms contribute to the estimate of the baseline hazard in a pamm,
two model terms were specifically included for the estimation of the baseline hazard: the
parametric intercept of the model, and the non-parametric smooth for time. The intercept
of the model is highly significant for both words (z = -228.087, p = < 0.001) and nonwords
(z = -417.128, p = < 0.001), as is the smooth for time (words: χ2 = 5774.851, p = < 0.001;
nonwords: χ2 = 9834.507, p = < 0.001). The estimated (log) baseline hazard for words (left
panel) and nonwords (right panel) is presented in Figure 4. The estimate of the baseline
hazard is highly similar to the estimate of the baseline hazard in a pamm without lexical
predictors presented above. We therefore refrain from further discussion of the baseline
hazard here.
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Figure 4 . Estimated baseline hazard for words (left panel) and nonwords (right panel) with
point-wise confidence intervals.

Frequency

For words, we found a highly significant main effect (log) frequency (χ2 = 4276.916,
p = < 0.001), as well as a highly significant interaction between time and (log) frequency
(χ2 = 1486.745, p = < 0.001). The partial main effect of (log) frequency (left panel)
and the partial effect of the interaction between time and (log) frequency (right panel) are
presented in Figure 5. Partial effect plots visualize the estimated adjustment to the (log)
baseline hazard as a function of a smooth term or tensor product. Note that the graphical
representation of the partial interaction is not exact. As all time-varying effects in a pamm
are piece-wise constant, all estimated time by predictor interactions are step functions in
the time dimension. For the number of intervals used here (51), however, the difference is
negligible (Bender & Scheipl, 2018).

The left panel of Figure 5 shows that (log) hazard rates are higher for high fre-
quency words. Conceptually, the main effect of (log) frequency indicates that overall the
instantaneous probability of a response is higher for high frequency words than it is for
low frequency words. The main effect of (log) frequency, however, is modulated by the
interaction that is shown in the right panel of Figure 5. Warmer colors in the right panel
of Figure 5 indicate higher (log) hazard rates. The partial effect of the interaction between
time and (log) frequency suggests that the increase in (log) hazard rates for high frequency
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Figure 5 . Partial main effect of (log) frequency (left panel) and partial interaction between
time and (log) frequency (right panel) for words. Warmer colors indicate higher (log) hazard
rates.

words is particularly prominent during the early stages of the response window. Later on,
the facilitatory main effect of word frequency is offset by an opposite effect in the partial
interaction between time and (log) frequency.

The interpretation of the overall effect of (log) frequency from the partial effect plots in
Figure 5 is less than straightforward, because it requires a joint evaluation of the partial main
effect and the partial interaction with time. Henceforth, we therefore visualize predictor
effects on the basis of the sum of the partial main effect of the predictor and the partial
interaction between the predictor and time. The left panel of Figure 6 presents the sum of
the partial main effect of (log) frequency and the partial interaction between time and (log)
frequency, which can be interpreted as the time-sensitive estimated adjustment to the (log)
baseline hazard as a function of (log) frequency. The white areas in Figure 6 correspond to
areas of the plot for which no data were available.

The current effect of (log) frequency is in line with the classical word frequency effect
in lexical decision (Forster & Chambers, 1973; Murray & Forster, 2004; Balota et al., 2004;
Keuleers et al., 2012). Traditional statistical techniques provide an overall estimate of the
effect of frequency that lead to conclusions such as “high frequency words are responded to
faster than low frequency words”. The pamm analysis presented here reveals information
about the temporal development of the frequency effect. As can be seen in the left panel
of Figure 6, the effect of (log) frequency is almost exclusively present for the early stages of
the response time window. For words that are not responded to at 600 ms after stimulus
onset, (log) frequency no longer is a strong predictor of response times, or, more technically,
of the instantaneous probability of a response. The pamm model thus provides insight into
the time course of the word frequency effect that would not have been available through
traditional analyses of the data.

The right panel of Figure 6 presents the effect of (log) frequency for nonwords. Both
the main effect of (log) frequency (χ2 = 2300.981, p = < 0.001) and the interaction between
time and (log) frequency (χ2 = 288.363, p = < 0.001) were highly significant. As was the
case for words, the effect of nonword frequency was most prominent during the early stages
of lexical processing, with a somewhat smaller effect size for nonwords than for words. The
qualitative nature of the frequency effects for words and nonwords, however, was different.
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Figure 6 . Effect of (log) frequency for words (left panel) and nonwords (right panel).
Warmer colors indicate higher (log) hazard rates.

Whereas (log) hazard rates were higher for high frequency words, (log) hazard rates are
lower for high frequency nonwords.

The opposite effects of frequency for words and nonwords might seem surprising at
first sight. Opposite effects of predictors for words and nonwords, however, are commonly
observed and originate from the nature of the lexical decision task. The more word-like
a nonword, the harder it is to reject it as a potential word and respond “no” (Andrews,
1989, 1992, 1997; Sears, Lupker, & Hino, 1999). The lower hazard rates associated with
high frequency nonwords therefore are not indicative of lower levels of activation in the
mental lexicon. To the contrary, the decreased hazard rates for high frequency nonwords
suggest difficulties in response selection due to higher levels of activation in the mental
lexicon. The increased activation for nonwords presumably does not correspond to an
increase in “local activation” of dedicated lexical representations, as no dedicated lexical
representations should exist for nonwords. Instead, the current results suggest that the
visual presentation of high frequency nonwords gives rise to an increased amount of total
activation in the mental lexicon as compared to the visual presentation of low frequency
nonwords. Previous studies have referred to the total amount of activation in the mental
lexicon as “global activation” (Yap et al., 2015; Norris, 2006; Coltheart, Rastle, Perry,
Langdon, & Ziegler, 2001; Grainger & Jacobs, 1996). Nonetheless, the interpretation of
the frequency effect for nonwords is less-than-straightforward. Why are activation patterns
in the mental lexicon different for high frequency nonwords as compared to low frequency
nonwords? We attempt to shed further light on the effect of nonword frequency in the
discussion section of this paper.

To establish the temporal onset of predictor effects, we calculated two sigma (95%)
confidence intervals around the contour surfaces. The temporal onset of a predictor effect is
defined as the first point in time at which 0 is not within this two sigma confidence interval
for at least one value of a predictor (see Hendrix, Bolger, & Baayen, 2017). For both words
and nonwords, the first point in time at which 0 was not within the two sigma confidence
interval for all values of log (frequency) coincided with the onset of the analysis window (i.e.,
500 ms after stimulus onset for words and 515 ms after stimulus onset for nonwords). This
confirms that the effects of both word frequency and nonword frequency arise early. Both
effects remain significant until the end of the analysis window (i.e., 975 ms after stimulus
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onset for words and 1060 ms after stimulus onset for nonwords). As noted above, however,
the effect size of both frequency effects decreases as a function of time. For both words and
nonwords, the effect of (log) frequency is most prominent for the early parts of the response
time distribution.

Length

We observed a significant main effect of length (χ2 = 8.495, p= 0.023) and a significant
interaction between time and length (χ2 = 151.522, p = < 0.001) for words. The effect of
length for words is presented in the left panel of Figure 7. The onset of the effect of length
coincides with the onset of the analysis window (500 ms after stimulus onset), whereas the
offset of the effect of length coincides with the offset of the analysis window (975 ms after
stimulus onset). The semi-transparent area in the right panel of Figure 7 correspond to
time points at which the effect of length was not significant (i.e., at which 0 was in the two
sigma confidence interval for all values of length; from 788 ms after stimulus onset to 814
ms after stimulus onset)

The functional form of the word length effect in lexical decision is not entirely undis-
puted. A number of studies report inhibitory effects, with longer response times for longer
words (O’Regan & Jacobs, 1992; Hudson & Bergman, 1985). Other studies, however, failed
to observe word length effects (Frederiksen & Kroll, 1976; Richardson, 1976). More re-
cently, (Baayen, 2005) documented a U-shaped effect of word length. Consistent with the
U-shaped effect observed by Baayen (2005), New et al. (2006) reported longer response
times for short words (3-5 letters) as well as for long words (8-13 letters) as compared to
words of intermediate length (5-8 letters).

The effect of length observed here fits well with the U-shaped effect of word length
reported by Baayen (2005) and New et al. (2006). As can be seen in the left panel of Figure 7,
the effect of word length is inhibitory for the left part of the response time distribution.
Early on, the probability of an instantaneous response thus is lower for longer words. Later,
the effect of word length reverses, with a higher probability of an instantaneous response
for long words than for short words. Recently, Hendrix (2018) observed similar bifurcated
effects of word length in pamm analyses of the lexical decision latencies in the English
Lexicon Project (Balota et al., 2007), the Dutch Lexicon Project (Keuleers et al., 2010),
and the French Lexicon Project (Ferrand et al., 2010).
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Figure 7 . Effect of word length for words (left panel) and nonwords (right panel).
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The early inhibitory effect of word length is likely to reflect the visual information
uptake process. The visual information uptake process takes longer for longer words. As
a result, early responses are less likely for long words. The later facilitatory effect of word
length is theoretically more interesting. An explanation for this effect is that long words
contain more (sub)lexical information that helps the reader identify the word than shorter
words (Baayen, Milin, Filipović Durdević, Hendrix, & Marelli, 2011; Ramscar, Hendrix,
Shaoul, Milin, & Baayen, 2014). As a result, longer words are easier to respond to than
shorter words once the visual information uptake process has been completed. Words of
medium length thus seem to reflect a “sweet spot” in lexical-distributional space where the
visual information uptake process can be completed in a limited period of time, while the
amount of information provided by the component letters is sufficient for rapid identification.

For nonwords, we observed a significant main effect of length (χ2 = 3340.491, p =
< 0.001) and a significant interaction between time and length (χ2 = 1286.548, p = < 0.001)
as well. The effect of length for nonwords is presented in the right panel of Figure 7. The
effect of length for nonwords is most prominent during the early stages of the response time
window, but remains significant until 921 ms after stimulus onset. Whereas the effect of
length for words is not entirely undisputed, the effect of length for nonwords is unequivocal.
Previous studies have consistently reported longer response times for longer nonwords (Yap
et al., 2015; Balota et al., 2004; Whaley, 1978). The current findings are in line with these
studies.

The temporal bifurcation that characterized the effect of length for words is not
present for nonwords. The effect of length for words, however, suggests that the effect
of length for nonwords may be a composite of an early and a later effect in the same
direction. As was the case for words, we expect the visual information uptake process to
take longer for longer nonwords. After the completion of the visual information uptake
process, however, the increased amount of (sub)lexical information in long nonwords results
in a higher activation of more real words in the mental lexicon. As a result, it is harder to
verify that a long nonword is not an existing word.

Mean bigram frequency

For words, both the main effect of mean bigram frequency (χ2 = 138.911, p = < 0.001)
and the interaction between time and mean bigram frequency (χ2 = 17.785, p = 0.022) were
significant. The effect of mean bigram frequency is presented in the left panel of Figure 8
and first reaches significance at 530 ms after stimulus onset. The last point in time at which
we observed a significant effect of mean bigram frequency is 788 ms after stimulus onset.

Recently, Baayen et al. (2011) and Milin, Feldman, Ramscar, Hendrix, and Baayen
(2017) observed inhibitory effects of bigram frequency in the lexical decision task, with
longer response latencies for words with more frequent bigrams. These studies interpreted
the effect of mean bigram frequency as a behavioral manifestation of the principles of
discrimination learning. The more frequent the bigrams in a word, the more words they
appear in and the less information they provide about the identity of the current word.
The reduced information provided by high frequency bigrams thus results in longer reaction
times (see also Ramscar et al., 2014). The effect of mean bigram frequency observed here is
consistent with the effect of bigram frequency reported by Baayen et al. (2011) and Milin et
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Figure 8 . Effect of mean bigram frequency (in billions) for words (left panel) and nonwords
(right panel).

al. (2017): the higher the average bigram frequency, the lower the instantaneous probability
of a response between 530 and 788 after stimulus onset.

The pamm analysis for nonwords revealed a significant main effect mean bigram fre-
quency (χ2 = 40.891, p = < 0.001) and a significant interaction between time and mean
bigram frequency (χ2 = 4.793, p = 0.033) as well. The effect of mean bigram frequency for
words is presented in the right panel of Figure 8. Instantaneous hazard rates are higher for
nonwords that consist of more frequency bigrams from 532 ms until 760 ms after stimulus
onset.

As was the case for the effect of word frequency and the late effect of word length,
the effect of average bigram frequency is opposite in nature for words and nonwords. High
frequency bigrams make it harder to respond “yes” to words. By contrast, the effect of mean
bigram frequency suggests that “no” decisions are easier for nonwords that consist of high
frequency bigrams. High frequency bigrams result in low activation of a large number of
words, whereas low frequency bigrams result in high activation of a small number of words
(Ramscar et al., 2014). The facilitatory effect of mean bigram frequency for nonwords thus
indicates that strong activation of a few words makes it harder to respond “no” to a nonword
as compared to moderate activation of a large number of words.

Orthographic neighborhood density

We gauged the effect of orthographic neighborhood density through the OLD20 mea-
sure, with lower values of OLD20 corresponding to denser orthographic neighborhoods. For
words, we found a significant main effect of OLD20 (χ2 = 91.937, p = < 0.001), as well as
a significant interaction between time and OLD20 (χ2 = 49.026, p = < 0.001). The effect
of OLD20 is first significant at 511 ms after stimulus onset and remains significant until
the end of the analysis window (975 ms after stimulus onset).

The effect of OLD20 for words is presented in the left panel of Figure 9. Although
there is a hint of an inverse U-shaped effect at the start of the analysis window, the over-
all nature of the effect of OLD20 is inhibitory. The probability of an instantaneous re-
sponse thus is higher for low values of OLD20 (i.e., for words from dense orthographic
neighborhoods). The current effect of OLD20 is consistent with the facilitatory effects
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Figure 9 . Effect of orthographic neighborhood density ((log) OLD20 ) for words (left panel)
and nonwords (right panel).

of orthographic neighborhood density reported in lexical decision studies that adopt more
traditional analysis techniques (Yarkoni et al., 2008; Keuleers et al., 2010; Andrews, 1989,
1992, 1997; Forster & Shen, 1996).

The right panel of Figure 9 presents the effect of OLD20 for nonwords. The effect
size of the effect of OLD20 is larger for nonwords than for words. Correspondingly, both
the main effect of OLD20 (χ2 = 793.965, p = < 0.001) and the interaction between time
and OLD20 (χ2 = 607.660, p = < 0.001) are highly significant. As was the case for the
effect of OLD20 for words, the effect of OLD20 for nonwords is more prominent during
the early stages of the analysis window, reaching significance from the onset of the analysis
window (515 ms after stimulus onset) until 930 ms after stimulus onset.

Consistent with the results of previous studies that investigated the effect of ortho-
graphic neighborhood density on lexical decision latencies for nonwords (Yap et al., 2015;
Balota et al., 2004; Carreiras et al., 1997; Forster & Shen, 1996; Andrews, 1989; Coltheart
et al., 1977), the effect of OLD20 for nonwords is facilitatory in nature, with lower hazard
rates for low values of OLD20 (i.e., for nonwords from dense orthographic neighborhoods).
The inhibitory effect of orthographic neighborhood density for nonwords provides further
evidence for the idea that it is harder to correctly reject nonwords that are more word-like
(Andrews, 1989, 1992, 1997; Sears et al., 1999) in the sense that they generate more global
activation in the mental lexicon (Yap et al., 2015; Norris, 2006; Coltheart et al., 2001;
Grainger & Jacobs, 1996).

Semantic neighborhood density

We calculated semantic neighborhood density estimates for both words and nonwords
on the basis of a fastText model trained on Wikipedia by Bojanowski et al. (2017). The
effect of the resulting predictor SND (i.e., semantic neighborhood density) for words is
presented in the left panel of Figure 10. Both the main effect of SND (χ2 = 290.530,
p = < 0.001) and the interaction of SND with time (χ2 = 58.160, p = < 0.001) were
highly significant. The effect of SND was present from the start of the analysis window
(500 ms after stimulus onset) and remained significant until 795 ms after stimulus onset.
Previous studies reported that a denser semantic neighborhood allows for faster visual word
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Figure 10 . Effect of semantic neighborhood density (SND) for words (left panel) and
nonwords (right panel).

recognition (Buchanan et al., 2001; Pexman & Hargreaves, 2008; Shaoul & Westbury, 2010).
The current effect of SND is in line with these findings: the instantaneous probability of
a response is higher for words from dense semantic neighborhoods (i.e., for high values of
SND).

The current study is the first to investigate the effect of semantic neighborhood density
for nonwords. As was the case for words, the main effect of SND was highly significant
for nonwords (χ2 = 120.505, p = < 0.001). Furthermore, the pamm analysis revealed a
significant interaction between time and SND (χ2 = 120.505, p = < 0.001). The effect of
SND for nonwords reached significance from the start of the analysis window (515 ms) until
888 ms after stimulus onset. Consistent with the pattern of results for word frequency, mean
bigram frequency, and orthographic neighborhood density, the effects of SND for words and
nonwords thus are in the opposite direction. Whereas the instantaneous probability of a
response is higher for words from dense semantic neighborhoods, hazard rates are lower for
nonwords from dense semantic neighborhoods. Again, this pattern of results fits well with
the idea that higher levels of activation make it harder to respond “no” to a nonword in the
lexical decision task.

At the end of the analysis window - from 1006 to 1060 ms after stimulus onset - the
effect of SND reverses, with a higher instantaneous probability of a response for nonwords
from dense semantic neighborhoods. The reversal of the effect of semantic neighborhood
density, however, was not present in a principal components analysis of the nonword lexical
decision data. The robustness of the late facilitatory effect of SND, therefore, is question-
able. Hence, we refrain for further discussion of this effect here.

Orthography-to-semantics consistency

The second semantic measure under investigation, (log) OSC, taps into the consis-
tency of the mapping between orthography and semantics. Higher values of (log) OSC
indicate a greater semantic similarity between a word or nonword and its orthographic
neighbors. For words, we observed a significant main effect of (log) OSC (χ2 = 207.936,
p = < 0.001) and a significant interaction of (log) OSC with time . . . (χ2 = 28.523, p =
< 0.001). Figure 11 visualizes the effect of (log) OSC for words, which reaches significance
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Figure 11 . Effect of orthography-to-semantic consistency ((log) OSC ) for words (left panel)
and nonwords (right panel).

from the start of the analysis window (500 after stimulus onset) until 842 ms after stimulus
onset. Consistent with the facilitatory effects of orthography-to-semantics consistency on
lexical decision latencies reported in previous studies (Marelli & Amenta, 2018; Marelli et
al., 2015; Jared, Jouravlev, & Joanisse, 2017), instantaneous hazard rates are higher for
words with more consistency orthography-to-semantics mappings during this interval.

We observed a significant effect of (log) OSC for nonwords as well. The pamm analysis
for nonwords revealed a significant main effect of (log) OSC (χ2 = 329.374, p = < 0.001) and
a significant interaction between time and (log) OSC (χ2 = 329.374, p = < 0.001). As can
be seen in the right panel of Figure 11, the effect of orthography-to-semantics consistency
for nonwords is inhibitory in nature, with a higher instantaneous probability of a response
for nonwords with a more consistent orthography-to-semantics mapping from the start of
the analysis window (515 ms after stimulus onset) until 840 ms after stimulus onset. As was
the case for the effects reported above, the qualitative nature of the effect of orthography-
to-semantics consistency for nonwords thus is opposite to the qualitative nature of the effect
of orthography-to-semantics consistency for words.

Discussion

Nonword reading is commonly assumed to be uninformative about lexical process-
ing. Recently, however, Yap et al. (2015) reported the results of an analysis of the lexical
decision latencies for nonwords in the English Lexicon Project (elp; Balota et al., 2007).
These results shed new light on the mechanisms that drive visual word recognition. Here,
we reported the results of an analysis of the lexical decision latencies for both words and
nonwords in the British Lexicon Project (blp; Keuleers et al., 2012) using a novel sta-
tistical technique from time-to-event analysis: the piece-wise exponential additive mixed
model (pamm; Bender & Scheipl, 2018; Bender, Groll, & Scheipl, 2018; Bender, Scheipl, et
al., 2018). We document a novel effect of the frequency of nonwords on Google. Further-
more, the pamm analysis revealed effects of two predictors related to semantic properties of
nonwords: semantic neighborhood density and orthography-to-semantics consistency. The
findings reported here provide interesting new insights into the processes that drive visual
word recognition; not only for nonwords, but also for words. Below, we discuss the implica-
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tions of the effects reported here for our understanding of lexical processing and for existing
models of visual word recognition. First, however, we establish the advantages of using a
pamm for the analysis of lexical decision latencies through a comparison of the results of the
pamm analyses reported here with the results of more traditional multiple linear regression
models.

Piece-wise exponential additive mixed models for response time data

The piece-wise exponential additive mixed model (pamm) is an extension of the piece-
wise exponential model (pem; M. Friedman, 1982) that leverages the wealth of statistical
possibilities offered by generalized additive mixed models (gamm; Wood, 2011, 2017). The
pamm offers insight into the non-linear development of non-linear predictor effects over
the response time window. The development of the (pamm) is recent. The application of
pamms to response time data in general, and to behavioral measures from psycholinguistic
experiments, therefore, is less than widespread. The current study is part of an initial
exploration of the potential of pamms for uncovering information about lexical processing
from reaction times in the lexical decision task that is not available through traditional
analysis techniques (cf Hendrix, 2018; Hendrix & Sun, 2019; Hendrix et al., 2019).

To establish the benefits of a pamm analysis of the lexical decision latencies in the
blp as compared to a traditional multiple linear regression analysis, we fit multiple linear
regression models to the reaction times for both words and nonwords. The dependent
variable in both models was the average reaction time for a word or nonword in the blp.
We applied inverse transforms to the reaction times to remove a rightward skew from the
reaction time distributions. The predictors were identical to the predictors in the pamm
analyses reported above: (log) frequency, length, mean bigram frequency, (log) OLD20,
SND, and (log) OSC. As was the case for the pamms reported above, we removed predictor
outliers further than 2.5 standard deviations from the predictor mean prior to analysis.
Furthermore, we excluded reaction times further than 2.5 standard deviations from the
reaction time mean. This resulted to the exclusion of 0.93% of the data for words and
1.42% of the data for nonwords.

The results for the linear regression model fit to the lexical decision latencies for
words are presented in Table 8. All predictor effects reached significance. Consistent with
the effects of the pamm analysis, the effects of (log) frequency (t = −104.925, p < 0.000),
SND (t = −19.296, p < 0.000), and (log) OSC (t = −16.987, p < 0.000) were facilitatory,

Table 8
Results for a linear multiple regression model fit to the lexical decision latencies for words.
Provided are β coefficients, standard errors (S.E.), t-values and p-values

β S.E. t-value p-value
Intercept -0.000 0.000 -26.133 < 0.001
(log) frequency -0.000 0.000 -104.925 < 0.001
length -0.000 0.000 -3.644 0.000
mean bigram frequency 0.000 0.000 12.606 < 0.001
(log) OLD20 0.000 0.000 9.135 < 0.001
SND -0.000 0.000 -19.296 < 0.001
(log) OSC -0.000 0.000 -16.987 < 0.001
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whereas the effects of mean bigram frequency (t = 12.606, p < 0.000) and (log) OLD20
(t = 9.135, p < 0.000) were inhibitory in nature. The pamm for words revealed a temporally
bifurcated effect of length, with an early inhibitory effect followed by a later, prolonged
facilitatory effect. The later facilitatory effect dominates the early inhibitory effect in the
response times, as indicated by a (relatively weak) facilitatory effect of length in the multiple
regression model (t = −3.644, p = 0.000).

Table 9 presents the results of the linear regression model fit to the nonword data.
As was the case for words, all predictor effects reached significance. Again, the sign of the
predictor effects was consistent with the qualitative nature of the predictor effects in the
pamm analysis reported above. The effects of (log) frequency (t = 49.721, p < 0.000), length
(t = 58.524, p < 0.000), SND (t = 12.770, p < 0.000), and (log) OSC (t = 17.860, p < 0.000)
were inhibitory, whereas the effects of mean bigram frequency (t = −4.708, p < 0.000) and
(log) OLD20 (t = −17.577, p < 0.000) were facilitatory in nature. The qualitative nature
of the effects of the predictors thus was opposite for words and for non-words, which, once
more, is consistent with the results of the pamm analyses reported above.

The multiple linear regression models fit to the reaction times for words and nonwords
demonstrate that the results of the pamm analyses are statistically robust. Unlike the
multiple linear regression models, however, the pamm analyses provide detailed information
about the temporal development of predictor effects over the response time window. The
pamms fit to the word and the nonword data, for instance, revealed that the effects of
the lexical-distributional predictors on the instantaneous probability of a response were
consistently more prominent during the early stages of the response time window than
during the late stages of the response time window. The effect size of the word frequency
effects, for instance, decreased substantially as a function of time. The same holds true
for the effects of word length, mean bigram frequency, orthographic neighborhood density,
semantic neighborhood density, and orthography-to-semantics consistency. The results of
the pamm analyses thus indicate that the predictors under investigation allow for relatively
rich insight into the processes that influence the probability of an instantaneous response
during the early stages of the response time window, but that these predictors provide
little information about the instantaneous probability of a response during later stages
of the response time window. The predictors included here dominate the experimental
literature and the concomitant development of models of visual word recognition. The
pamm analyses reported here therefore suggest that our understanding of the processes

Table 9
Results for a linear multiple regression model fit to the lexical decision latencies for non-
words. Provided are β coefficients, standard errors (S.E.), t-values and p-values

β S.E. t-value p-value
Intercept -0.002 0.000 -139.488 < 0.001
(log) frequency 0.000 0.000 49.721 < 0.001
length 0.000 0.000 58.524 < 0.001
mean bigram frequency -0.000 0.000 -4.708 < 0.001
(log) OLD20 -0.000 0.000 -17.577 < 0.001
SND 0.000 0.000 12.770 < 0.001
(log) OSC 0.000 0.000 17.860 < 0.001
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that influence the decision making process when a participant is unable to respond to a
word early on, therefore, is limited. This offers interesting opportunities for future research,
in which pamms could help identify the factors that drive the decision making process during
the later stages of the response time window.

The effect of word length for words further demonstrates the advantage of the pamm
over traditional analyses techniques. The pamm analysis indicates that the inhibitory ef-
fect of word length is a composite of an early inhibitory effect and later facilitatory effect
that is temporally more widespread (cf. Hendrix, 2018). We speculated that the early
inhibitory effect of word length may arise due to the increased costs of visual information
uptake for long words, whereas the later facilitatory effect may reflect the increased infor-
mation provided by longer words. As noted above, the effect of word length in the multiple
regression model is reduced to a facilitatory effect with a relatively small effect size. The
early inhibitory effect of word length thus is masked in a traditional regression analysis of
the response times. The ability of the pamm to model predictor effects that develop in a
non-linear manner over time therefore helped uncover information about the effect of word
length that would not have been available through a traditional regression analysis of the
data.

Here, we focused on non-linear main effects of predictors and non-linear interactions
of predictors with time. Non-linear, non-linearly time-varying effects, however, are but one
of the statistical opportunities offered by the pamm. While we restricted ourselves to the
interplay of a time and a single predictor here, the pamm caters for the investigation of the
temporal development of non-linear interactions between predictors as well. In addition,
predictors need not be constant over time. Predictors with time-sensitive predictor values
can be included in a straightforward manner in the piece-wise exponential data format used
by the pamm. Furthermore, random intercepts and more complex random effect structures
for nested or crossed stimulus properties are available (cf. Wood & Scheipl, 2017). The
pamm therefore offers a rich set of statistical tools that can help researchers gain a more
thorough understanding of response time data from linguistic experiments.

We end our discussion of the pamm with a precautionary note. The pamm helps
provide insight into the temporal development of predictor effects on the instantaneous
probability of a response. An early effect on the instantaneous probability of a response,
however, does not translate in a one-to-one manner to an early effect on lexical processing.
The effects of word frequency and semantic neighborhood density on the instantaneous
probability of a response, for instance, are both significant when the first responses start to
come in. This does not imply, however, that the temporal onset of effects of word frequency
and semantic neighborhood density on lexical processing are identical (nor does it exclude
this possibility). It is important, therefore, to carefully consider the types of conclusions
that can and that cannot be drawn when interpreting the results of a pamm.

Models of visual word recognition

The presentation of a word or nonword stimulus results in the activation of various
types of lexical information in the mental lexicon, either in the form of different activation
levels of symbolic lexical units or as activation patterns over subsymbolic units. A “yes”
(i.e., the presented stimulus is a word) or “no” (i.e., the presented stimulus is a nonword)
response in the lexical decision task is made on the basis of the activated lexical information.
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Recent evidence from the neuroscience literature suggests that there is a functional and
neurobiological separation between response learning and response selection (see Grindrod,
Bilenko, Myers, & Blumstein, 2008; Milin et al., 2017; Baayen, Hendrix, & Ramscar, 2013;
Hendrix, 2016, for a discussion of this issue in the context of the lexical decision and word
naming paradigms). Whereas response learning and, in the context of the lexical decision
task, the activation of lexical information when a linguistic stimulus is presented take place
in the temporal and parietal lobes of the cortex, the frontal lobe of the cortex is responsible
for the selection of the appropriate response (Botvinick, Cohen, & Carter, 2004; Novick,
Trueswell, & Thompson-Schill, 2010; Yeung, Botvinick, & Cohen, 2004). The idea that
there is a functional separation between the activation of lexical information and response
selection is either explicitly or implicitly embodied in most computational models of visual
word recognition.

Evidence for a functional separation between lexical activation and response selection
in the context of the lexical decision task is provided by Holcomb, Grainger, and O’Rourke
(2002). Holcomb et al. (2002) report the results of a neurobiological investigation of the
opposite effect of orthographic neighborhood density for words and nonwords through the
registration of event-related potentials (erps) during the lexical decision task. The response
times in Holcomb et al. (2002) showed the habitual facilitatory effect of orthographic neigh-
borhood density for words and inhibitory effect of orthographic neighborhood density for
nonwords (cf. Yap et al., 2015; Balota et al., 2004; Carreiras et al., 1997; Forster & Shen,
1996; Andrews, 1989; Coltheart et al., 1977). The erps, however, revealed qualitative a
qualitatively similar pattern of results for words and nonwords. Both words and nonwords
from dense orthographic neighborhoods gave rise to larger N400s as compared to words and
nonwords from sparse orthographic neighborhoods. This pattern of results suggest that
lexical activation is guided by the same principles for words and nonwords, and that the
opposite pattern of results for words and nonwords arises during response selection. The
same core phenomenon in lexical activation can thus lead to qualitatively different effects
on behavioral measures due to task-specific response selection mechanisms (see Holcomb
et al., 2002, p. 939). Before we discuss the implications of the effects reported here for
our understanding of lexical processing, we introduce the proposed mechanisms for lexical
activation and response selection in a few of the most influential models of visual word
recognition.

The multiple-read out model (henceforth mrom) proposed by Grainger and Jacobs
(1996) is an interactive activation model within the more general tradition of connectionist
network models (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). Re-
sponse selection in the mrom is based on both local activation (i.e., the activation of the
dedicated lexical representations corresponding to individual words) and global activation
(i.e., the activation in the mental lexicon as a whole). A “yes” response is made when the
activation of a word reaches a threshold value. A “no” response is made when no word
reaches threshold activation before the deadline. The deadline in the mrom is variable, and
is proportional to and determined by the amount of global activation at the early stages
of lexical processing. The mrom successfully captures a number of benchmark effects in
the lexical decision literature, such as the inhibitory effect of orthographic neighborhood
density for nonwords. The model has been criticized, however, for the fact that the vari-
able deadline mechanism is included for pragmatic rather than theoretical reasons (i.e., to
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explain the effect of orthographic neighborhood density, see Norris, 2006). The same criti-
cism applies to another interactive activation model of visual word recognition that adopts
the variable deadline approach for the lexical decision task: the dual-route cascaded model
(drc; Coltheart et al., 2001).

A second influential model of visual word recognition is the Bayesian Reader (Norris,
2006, 2009). The premise of the Bayesian Reader is that readers behave like optimal decision
makers in the context of an input (i.e., the presentation of a stimulus) and prior probabilities
of words (i.e., word frequencies). Response selection in the lexical decision task is based
on the posterior probability that the input was generated by a word and the posterior
probability that the input was generated by a nonword. These posterior probabilities are a
function of the relative likelihood that the input was generated by a word or nonword, which
depends on the prior probability of each individual word and nonword and the likelihood of
the input given each individual word and nonword. Global activation thus is model-intrinsic
in the Bayesian Reader. As noted by (Norris, 2009, p. 210), there is no functional separation
between lexical activation and response selection: “the duration of lexical processing and
the duration of decision processing are one and the same thing”. The same holds true for
the rem-ld model proposed by Wagenmakers et al. (2004), which is a Bayesian model
specifically designed for word and nonword recognition in the lexical decision task that
differs from the Bayesian reader with respect to its input representations and the way in
which posterior probabilities for words and nonwords are computed.

The Naive Discriminative Reader (ndr; Baayen et al., 2011) is a two-layer symbolic
network model of visual word recognition that is formulated on the principles of discrim-
ination learning. Baayen et al. (2011) reported excellent predictive power of the ndr for
(the effect of lexical predictors on) response times in the lexical decision task. Effects of
orthographic neighborhood density, for instance, were captured through the activation of
the target word (i.e., the word presented on the screen) as a result of competition during
learning. What the ndr does not do, however, is generate actual responses. The reason for
this is that the authors of the ndr subscribe to the idea of a functional separation between
lexical activation and response selection (Baayen et al., 2013). To generate responses in
the ndr, it is therefore necessary to adopt a separate response selection mechanism that
operates on the output of the discrimination learning network.

The need for an independent response selection mechanism inspired the development
of two stand-alone modules that select a response on the basis of the lexical activations
generated by a model for visual word recognition. Ratcliff, Gomez, and McKoon (2004)
explored the potential of the diffusion model proposed by Ratcliff (1978) in the context of
lexical decision. The drift rate of the diffusion model for lexical decision depends on the
output of a lexical activation model. The diffusion model assumes that lexical processing
takes place during a fixed period of time prior to the onset of the diffusion process. Reaction
times thus solely depend on the diffusion process. Dufau, Grainger, and Ziegler (2012)
proposed a leaky competing accumulator (lca) response module for lexical decision. The
lca model consists of two nodes : a “yes” node and a “no” node. The “yes” node and the
“no” node communicate through inhibitory connections. The input to the “yes” node is a
measure of lexical activation obtained from an independent model, whereas the input to
the “no” node is a constant minus the same measure of lexical activation. Lexical decision
latencies are generated on the basis of this input through a leaky, competitive mechanism.
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The models of visual word recognition for lexical decision discussed here differ with
respect to the mechanisms proposed for lexical activation and response selection, as well as
with respect to the functional architecture that integrates lexical activation and response
selection. The notion of word-likeness (Andrews, 1989, 1992, 1997; Sears et al., 1999),
however, is an important concept across models of visual word processing in the lexical
decision task in the context of nonword processing, be it as a pragmatic construct to account
for behavioral data or as an emergent property of the adopted learning mechanism. The
word-likeness of a nonword is gauged through the amount of global activation in the mental
lexicon. The different models of visual word recognition agree that greater levels of global
activation should result in longer response times for nonwords (see, however Perea et al.,
2005, for an effect of base word frequency that is in the opposite direction), either as an
inherent property of lexical activation or as a result of the decision making process. The
more word-like a nonword, the harder it is to (correctly) respond “no” in the lexical decision
task. The exact lexical-distributional properties of a nonword that contribute to its word-
likeness, however, remain a topic of ongoing research.

Frequency effect for nonwords

Previous studies approximated the frequency of a nonword through base word fre-
quency measures. Base word frequency is defined either as the frequency of the real word a
nonword is based on or the frequency of a nonwords’ orthographic neighbors. The qualitative
nature of the effect of base word frequency in these studies, however, has been less-than-
consistent. Whereas some studies reported facilitatory effects of base word frequency (Yap
et al., 2015; Ziegler et al., 2001), others documented inhibitory effects (Andrews, 1996;
Perea et al., 2005) or null effects (Allen et al., 1992). Here, we obtained nonword frequen-
cies through Google searches for the 10, 000 nonwords under investigation. For the current
data, the correlation between the Google nonword frequencies and a base word frequency
measure similar to the one used by Yap et al. (2015) is r = 0.464. At least for the data
used here, base word frequency thus is a fairly crude approximation of nonword frequency.
Furthermore, for the current data, the effect size of a base word frequency measure based on
the average frequency of a nonword’s orthographic neighbors in a multiple linear regression
model of the nonword lexical decision data was much smaller (t = 2.602, p = 0.009) than
the effect of the Google frequency of a nonword (t = 49.721, p < 0.001) in a similar model.
This is not to say that the effect of base word frequency is not theoretically interesting.
For the lexical decision data for the nonwords in the blp, however, the nonword frequency
counts obtained from Google provide superior explanatory power.

How should the nonword frequency effect observed here be interpreted? Providing
an answer to this question, it turns out, is less-than-trivial. One possibility is that some
participants may have previously encountered a subset of the nonwords in the blp, and
that this subset of nonwords drives the nonword frequency effect. The tendency towards
multimodality in the nonword frequency distribution (see Figure 1) would be in line with
such an interpretation of the nonword frequency effect. Manual inspection of the nonwords
in the blp indicated that the lexical status of a minority of the nonwords under investigation
could indeed be considered questionable. Participants may have experienced the nonword
“doller”, for instance, as a miss-spelling of the word “dollar”. Although it is not techni-
cally a word, the nonword “liker” is easily interpreted as “a person who likes (something)”.
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Urban Dictionary, a crowdsourced online dictionary for slang words, defines the nonword
“mesty” as a portmanteau of “messy” and “nasty”. Nonwords that may previously have
been encountered by participants, however, form a small minority of the nonwords in the
blp. The effect of nonword frequency reported here thus is unlikely to be driven by pre-
vious experience with a subset of the nonwords under investigation. Indeed, the reported
effect of nonword frequency remained highly significant in a pamm analysis that included
nonwords with a Google frequency smaller to or equal to 100 only (21.80% of the nonword
data; main effect of ( log) frequency: χ2 = 386.445, p < 0.001, interaction of time with (log)
frequency: χ2 = 74.428, p < 0.001). The qualitative nature of the effect of (log) frequency
in this pamm analysis was highly similar to the qualitative nature of the effect of nonword
frequency reported above.

A second option is that the nonword frequency effect captures the effect of a latent
predictor that is highly correlated with nonword frequency. Nonword frequency is highly
correlated with length (r = −0.785) and orthographic neighborhood density (as measured
through the average Levenshtein distance between a word and it’s 20 closest orthographic
neighbors; r = −0.820). The nonword frequency effect could therefore be a latent effect
of visual complexity or orthographic neighborhood density. To exclude this possibility, we
carried out two additional analyses. First, we investigated the role of non-linear correlations
between predictors through concurvity estimates for the fitted pamms. The moderate con-
curvity that was present in the pamm fit to the nonword lexical decision data is unlikely to
have led to unstable model estimates or uninterpretable predictor effects. The concurvity
estimates for (log) frequency (main effect smooth: 0.691, tensor product interaction with
time: 0.505) indicated that a substantial part of the non-linear time-varying effect of (log)
frequency cannot alternatively be captured by length, orthographic neighborhood density,
or the other predictors under investigation. Second, we carried out a principal components
analysis with varimax rotation. This principal components analysis allowed us to separate
(log) frequency from length and (log) OLD20 to a decent extent. At 0.432, the loading of
(log) frequency on the corresponding rotated component was moderate. The loadings of
length and (log) OLD20 on the rotated component that corresponded to (log) frequency
were lower than or equal to 0.122, as were the loadings of all other predictors entered into
the analyses. The rotated component thus captured a decent proportion of the variance
related to (log) frequency, while being orthogonal or near-orthogonal to length and (log)
OLD20. The effect of the rotated component corresponding to (log) frequency in a pamm
analysis of the lexical decision data for nonwords was highly similar to the effect of nonword
frequency reported above.

The possibility remains, of course, that the nonword frequency effect is a latent effect
of a lexical-distributional variable that was not included in the current analyses. Primary
candidates for such lexical-distributional variables are frequencies of component letter n-
gram sequences. Here, we included mean bigram frequency as a proxy of the component let-
ter bigram sequences. The (log) frequency and mean bigram frequency measures were nearly
entirely orthogonal (r = −0.017). Nonetheless, it is theoretically possible that the frequen-
cies other letter n-gram sequences strongly correlate with (log) frequency. We therefore cal-
culated mean letter unigram, mean letter trigram, mean letter quadgram, and mean letter
pentagram frequencies as well. The correlations of mean unigram frequency (r = −0.069),
mean trigram frequency (r = −0.179), mean quadgram frequency (r = −0.224), and mean
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pentagram frequency (r = −0.114) with the frequency of the nonword as a whole, however,
were weak. The effect of nonword frequency thus is unlikely to be a latent effect of the
frequency of component letter n-gram sequences. As noted by Harald Baayen during the
review process, with the exclusion of base word frequency, word length, orthographic neigh-
borhood density, and component letter n-gram frequency as potential confounds, “there
is no obvious mediating variable that can be held responsible for the nonword frequency
effect”.

The effect of nonword frequency thus remains an enigma. On the one hand, the effect
of nonword frequency is qualitatively similar to the effect of word frequency, albeit opposite
in nature due to task demands (i.e., nonwords require a “no” response, whereas word require
a “yes” response). One the other hand, however, it is unlikely that an interpretation of the
word frequency effect and the nonword frequency effects along the same lines is correct.
Although models of visual word recognition disagree on the exact cognitive architecture of
the processes that drive the word frequency effect, the consensus is that the more often a
participant encountered a word in the past, the easier it is to access that word. As noted
above, the effect of nonword frequency reported here was present across the entire nonword
frequency range. Participants almost certainly did not encounter low frequency nonwords
before. Hence, it is unlikely that previous experience with (a subset of the) nonwords in
the blp drives the effect of nonword frequency observed here. Presumably, the mechanisms
that underlie the nonword frequency effect, therefore, are distinct from the mechanisms that
underlie the word frequency effect.

The pamm analyses revealed a highly significant effect of nonword frequency with a
considerable effect size. In a multiple linear regression model fit to the nonword lexical deci-
sion latencies, nonword frequency was the second strongest predictor of the lexical decision
latencies for nonwords in the blp (see above), after word length. To further demonstrate
the prominence of the nonword frequency effect we conducted random forest analyses of the
lexical decision latencies for the words and nonwords in the blp. Using the ranger package
for r (Wright & Ziegler, 2017), we fit random forests with 500 trees to the data, setting
the parameter for the number of predictors that are considered in each tree to 2. The
random forest for words explained 35.80% of the variance in the data, whereas the random
forest for nonwords explained 30.65% of the variance in the data. Following the recommen-
dation of Nicodemus, Malley, Strobl, and Ziegler (2010), we established the contribution
of the lexical-distributional variables through unscaled permutation-based variable impor-
tances. We divided variable importances by the sum of all variable importances to obtain
the relative influence of predictors in the random forest models.

The relative influences of the lexical-distributional variables for words (left panel)
and nonwords (right panel) in the random forest models are presented in Figure 12. For
words, frequency accounts for a majority of the predictive power of the random forest (rela-
tive influence: 0.651). The contributions of length (relative influence: 0.111), mean bigram
frequency (relative influence: 0.024), OLD20 (relative influence: 0.104), SND (relative in-
fluence: 0.055), and OSC (relative influence: 0.055) are more modest. For nonwords, the
predictor with the greatest explanatory power is length (relative influence: 0.385). Con-
sistent with the results of the multiple regression model, frequency is the second strongest
predictor for the lexical decision latencies for nonwords in the random forest model (relative
influence: 0.342). Again, the predictive power of nonword frequency is considerable greater
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Figure 12 . Relative influence of the lexical-distributional variables frequency, length, mean
bigram frequency, OLD20, SND, and OSC in a random forests fit to the lexical decision
data for words (left panel) and nonwords (right panel).

than that of mean bigram frequency (relative influence: 0.035), OLD20 (relative influence:
0.127), SND (relative influence: 0.051), and OSC (relative influence: 0.060).

The prominence of the nonword frequency effect across the pamm, the multiple linear
regression, and the random forest analyses of the data establishes nonword frequency as an
important predictor for response times to nonwords in the lexical decision task. The current
results fit well with the frequency effect for nonwords in the word naming task that was
recently reported by Hendrix et al. (2019). In this study, nonword frequency emerged as the
strongest predictor of naming latencies in a re-analysis of the nonword naming data collected
by McCann and Besner (1987), with a higher t-value for nonword frequency than for length
or orthographic neighborhood density in a multiple linear regression model of the data.
The frequency with which nonwords are used thus captures an essential aspect of nonword
processing, even through individual participants are highly unlikely to have encountered
these nonwords before. The questions posed by the effect of nonword frequency thus are
not only interesting, but also highly relevant. The answers to these questions have the
potential to provide important new insights into nonword processing and into the processes
that underlie visual word recognition.

The nonword frequency effect poses an interesting challenge to models of visual word
recognition. The multiple read-out model (mrom; Grainger & Jacobs, 1996) accounts for
the effect of word frequency by assuming higher levels of local activation (i.e., activation of
the lexical representation of a word) for high frequency words as compared to low frequency
words. As noted above, however, participants are highly unlikely to have previous experience
with most of the nonwords in the blp. Lexical representations cannot exist for words that
have not previously been encountered. Increased local activation, therefore, is a less-than-
persuasive explanation for the nonword frequency effects observed here. The frequency
effect in the Bayesian reader arises due to the fact that the posterior probability of a
given word is a function not only of the perceptual evidence for that word, but also of
the prior probability of the word (i.e., its frequency). All nonwords in a set of nonwords
that a given participant has no prior experience with, however, should be equiprobable
for that participant. The frequency effect for nonwords thus cannot straightforwardly be
explained as a consequence of increased prior probabilities for high frequency nonwords.
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In the Naive Discriminative Reader (ndr; Baayen et al., 2011) frequency effects arise as a
result of stronger associations between input features (i.e., letters and letter combinations)
and lexical representations. These stronger associations are a consequence of the increased
experience with high frequency words. As noted above, however, lexical representations
cannot exist for nonwords, nor do participants have previous experience with nonwords.

The mechanisms that are responsible for the word frequency effect in the mrom,
the Bayesian Reader, and the ndr therefore do not offer a convincing explanation for the
nonword frequency effect observed here. The fact that the effect of nonword frequency
cannot be explained through the cognitive architectures responsible for the word frequency
effect in models of visual word recognition indicates that existing interpretations of the
word frequency effect should be carefully reconsidered as well. Apparently, it is possible for
frequency effects to emerge in the absence of experience with individual words. While it
is highly likely that previous experience with words contributes to word frequency effects,
it may therefore provide an incomplete explanation of these effects. The mechanisms that
drive the enigmatic effect of nonword frequency reported here may contribute to word
frequency effects as well. Further research into the nature of the nonword frequency effect
reported here thus is pivotal for a comprehensive understanding lexical processing not only
for nonwords, but also for words.

Semantic effects for nonwords

We furthermore reported effects of semantic neighborhood density, as well as of
orthography-to-semantics consistency. The semantic vectors that underlie both predictors
were extracted from a fastText model trained on Wikipedia by Bojanowski et al. (2017).
As noted above, fastText is an extension of the word2vec skip-gram model that takes
subword information into account. Semantic vectors for words are defined as the sum of
the semantic vector for the word itself and the semantic vectors for its component letter
3-grams to 6-grams. For nonwords, no semantic vectors for the nonword as a whole are
available. Semantic vectors for nonwords, therefore, are defined as the sum of the semantic
vectors for its component letter n-grams. These semantic vectors for nonwords represent
the location of nonwords in the same multi-dimensional semantic space that describes the
semantic properties of words.

The use of semantic vectors derived from a fastText model for the analysis of psy-
cholinguistic data is novel. To establish the influence of using substring information to
generate semantic vectors, we compared the current semantic measures SND and (log) OSC
to identical measures calculated on the basis of semantic vectors from a standard word2vec
skip-gram model, which was trained on Wikipedia as well (Yamada, Asai, Shindo, Takeda,
& Takefuji, 2018). The correlation of the SND measure used here with an identical SND
measure calculated on the basis of the semantic vectors in the word2vec model was 0.842.
The correlation of the (log) OSC measure with an identical (log) OSC measure calculated
on the basis of the semantic vectors in the word2vec model was 0.869. The high corre-
lations indicate that the semantic vectors for words generated by a fastText model are
highly similar to the semantic vectors generated by a more traditional word2vec model.
Multiple regression models of the lexical decision data for words including (log) frequency,
length, (log) old20, and mean bigram frequency as predictors, furthermore indicated that
the effects of SND and (log) OSC were similar for the measures based on the semantic
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vectors from the fastText model (SND: t = −19.296; (log) OSC : t = −16.987) and the
semantic vectors from the word2vec model (SND: t = −18.748; (log) OLD: t = −19.507).
The semantic effects for words reported here thus do not depend on the use of substring
information for the semantic vectors generated by fastText.

For nonwords, the semantic vectors in the fastText model rely exclusively on the
use of substring information. Bowers, Davis, and Hanley (2005) provide evidence for the
relevance of letter substrings for activation patterns in the semantic system. Bowers et al.
(2005) reported the results of a semantic categorization task, in which target words either
contained subsets (e.g., target word “hatch”, subset “hat”) or were part of supersets (e.g.,
target word “ bee”, superset “beer”). Target words were categorized in both a congruent
condition and an incongruent condition. In the congruent condition the correct response was
identical for the target word and the subset or superset (“Does hatch refer to a human body
part?”), whereas in the incongruent condition the correct response for the target word and
the subset or superset were different (“Does hatch refer to a piece of clothing?”). Responses
were slower in the incongruent condition for target words that contained subsets, as well
as for target words that were parts of supersets. Both subsets and supersets thus were
processed to the semantic level, which indicates that activation patterns in the semantic
system are sensitive to orthographic information below the word level.

Semantic nonword priming studies furthermore indicated that the semantic system is
activated not only through word reading, but also through nonword reading. For nonwords
that were derived from real words through letter transposition (e.g. the nonword “therad”
was derived from the base word “thread”), for instance, White (1986), reported shorter
naming latencies for nonwords that were preceded by a semantically related prime (e.g.,
prime “needle”, target “therad”). Semantic priming effects were observed for nonwords
that were derived from real words through letter substitution as well. Rosson (1983), for
instance, found semantic priming effects for prime-target pairs such as “famb” (base word:
“lamb”) - “sheep”. Similarly, Bourassa and Besner (1998) observed semantic priming effects
for prime-target pairs such as “deg” (base word: “dog”) - “cat”, albeit only at short prime
durations. Deacon, Dynowska, Ritter, and Grose-Fifer (2004) extended the findings of these
studies in an erp experiment. Deacon et al. (2004) reported semantic priming effects that
were similar to the semantic priming effects for real words for nonwords that were derived
from real words through single (“tolip”, base word: “tulip”) or double (‘contle‘, base word:
“candle”) letter substitution. These results of these studies suggest that the activation
of semantic information through the visual presentation of a nonword is automatic, and
inevitable.

The question that remains, then, is how to interpret the effects of SND and (log)
OSC for nonwords. For words, the situation is relatively clear. The denser the semantic
neighborhood of a word, the shorter the response times in visual word recognition studies
(Buchanan et al., 2001; Pexman & Hargreaves, 2008; Shaoul &Westbury, 2010). Similarly, a
greater consistency of the orthography-to-phonology mapping corresponds to shorter lexical
decision latencies (Marelli & Amenta, 2018; Marelli et al., 2015; Jared et al., 2017). As
noted by Marelli and Amenta (2018, p. 1493), there is a clear distinction between both
measures and the concepts that underlie them: “OSC captures semantic information that
is tightly entangled with the word orthography and has an effect on lexical access that is
independent from the one associated with the sheer semantic neighborhood.”. Indeed, at
r = 0.285, the correlation between SND and (log) OSC for words is weak.
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The semantic vectors for nonwords, however, exclusively depend on component letter
n-grams sequences. A possibility, therefore, is that the SND measure is tightly tied to the
orthography of nonwords and may therefore taps into orthography-to-semantics consistency,
rather than into semantic neighborhood density. The correlation of r = 0.637 between
SND and (log) OSC indicates suggests that this idea is reasonable. A principal components
analysis with varimax rotation, however, allowed us to map both predictors onto orthogonal
rotated components. The loading of SND on the corresponding component was 0.934,
whereas the loading of (log) OSC on this component was 0.334. Similarly, the loading
of (log) OSC on its corresponding component was 0.937, whereas the loading of SND on
this component was 0.338. The effects of both rotated components in a pamm fit to the
nonword lexical decision data were qualitatively similar to the effects of SND and (log) OSC
reported above. The results of the principal components analysis suggest that the effect
of SND for nonwords does not seem to be a latent effect of (log) OSC. Furthermore, the
principal components analysis indicates that the effects of SND and (log) OSC cannot be
reduced to effects of word frequency, word length, mean bigram frequency, or orthographic
neighborhood density.

Nonetheless, as pointed out by a reviewer, the current results do not provide conclusive
evidence about the extent to which the SND and (log) OSC measures for nonwords tap
into distinct concepts. The results of the principal components analysis indicate that the
current SND and (log) OSC measures have distinct effects on the lexical decision latencies
for nonwords in the blp. There are at least two explanations for this, both of which may be
partially or entirely responsible for the observed pattern of results. The first is that, as is the
case for words, the SND and (log) OSC measures tap into distinct concepts. The second is
that the distinct effects of both measures observed here are a result of the different manner
in which orthographic similarity is operationalized in both measures. The semantic vectors
for nonwords that underlie the SND measure are the sum of the semantic vectors for the
component letter n-grams. Orthographic neighbors in the context of the SND measure thus
are words that share component letter n-grams. By contrast, for the (log) OSC measure,
orthographic neighbors were defined as the 5 words with the shortest Levenshtein distance
to a nonword. The possibility remains, therefore, that the (log) OSC and SND measures
used here both tap into orthography-to-semantics consistency and that the distinct effects
of both measures are (at least partially) due to the manner in which these measures were
calculated. Further research is necessary to provide further insight into this issue.

The effects of semantic neighborhood density and orthography-to-semantics consis-
tency indicate that the orthographic presentation of a nonword leads to activation patterns
in the semantic system, much like the orthographic presentation of a real word does (cf.
Deacon et al., 2004; Cassani et al., 2019; Chuang et al., 2019). The more similar the acti-
vation patterns in the semantic system for a nonword are to the activation patterns in the
semantic system for real words, the more word-like a nonword is. Consequently, it is harder
to respond “no” to a non-word with a high semantic neighborhood density (Andrews, 1989,
1992, 1997; Sears et al., 1999). Similarly, nonwords that generate similar activation patterns
in the semantic system as orthographically similar real words tend to lead to higher levels
of activation in the semantic system. This, too, makes it harder to reject these nonwords
as potential real words, and leads to longer response times in the lexical decision task. As
was the case for the effect of frequency, the inhibitory effects of semantic neighborhood
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density and orthography-to-phonology consistency, therefore, reflect difficulties in response
selection as a consequence of activation patterns in the semantic system that resemble the
activation patterns in the semantic system for real words.

Above, we noted that the notion of word-likeness is an important concept in the
context of nonword processing across models of visual word recognition. Typically, it is
assumed that greater levels of global activation indicate a higher degree of word-likeness. An
inspection of the semantic vectors for words and nonwords used here, however, revealed that
the average standard deviation of the semantic vectors for the words (0.250) and nonwords
(0.244) is similar. The average sum of the non-negative loadings on the dimensions of
semantic space is similar for words (30.365) and nonwords (29.963) as well. Assuming
that the semantic vectors extracted from fastText provide an accurate estimation of the
(amount of) semantic information associated with words and nonword, the nonwords in
the blp would thus be nearly as word-like as the words in the blp. To the extent that
word-likeness is a useful concept in the context of nonword processing, an interpretation of
word-likeness in terms of the amount of global activation may therefore not be optimal. At
least in the semantic domain, word-likeness is perhaps better thought of as the similarity
of the activation patterns for a nonword to the activation patterns for similar real words.

Currently, none of the models of visual word recognition in the lexical decision task
discussed above take the role of semantics into account, although it should be noted that
Cassani et al. (2019) and Chuang et al. (2019) started exploring semantic effects for non-
words in the context of linear discrimination learning (Baayen, Chuang, Shafaei-Bajestan,
& Blevins, 2019; Baayen, Chuang, & Blevins, 2018). The effects of the measures of seman-
tic neighborhood density and orthography-to-semantics consistency reported here indicate
the semantic information influences lexical processing in visual word recognition, as gauged
through the visual lexical decision task. The fact that these effects are present not only
for words, but also for nonwords indicate that these effects do not crucially depend on
the presence of lexical representations. Rather, the semantic effects reported here fit well
with the idea that semantic information is represented in a distributed fashion, and that
this information is activated in an automatic fashion, independent of the lexical status
of the linguistic input. The semantic effects reported here thus pose a challenge for the
extension of existing models of visual word recognition. Furthermore, the current results
highlight the importance of the development of semantic measures that can be calculated
not only for words, but also for nonwords. The current semantic neighborhood density and
orthography-to-semantics consistency measures calculated on the basis of fastText models
are a promising step in this direction.

Conclusions

We reported the results of an investigation of the average lexical decision latencies
for 18,547 words and 10, 000 nonwords in the British Lexicon Project (blp; Keuleers et al.,
2012). Response times in the lexical decision task are often though to reflect the activation
of individual lexical representations in the mental lexicon. Nonword processing, in this
view, is uninteresting due to absence of lexical representations for nonwords. Previous
studies, however, provide support for the idea that lexical activation arises independent of
the lexical status of a presented stimulus. A number of studies, for instance, have reported
effects of orthographic neighborhood density for nonwords (Yap et al., 2015; Balota et al.,
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2004; Carreiras et al., 1997; Forster & Shen, 1996; Andrews, 1989; Coltheart et al., 1977).
The nature of the neighborhood density effect for nonwords is opposite to the nature of the
neighborhood density effect for words (Yarkoni et al., 2008; Keuleers et al., 2010; Andrews,
1989, 1992, 1997; Forster & Shen, 1996), presumably due to the opposite nature of the
task for words and nonwords in the lexical decision task (i.e, a “yes” response versus a “no”
response). The results reported here are consistent with the opposite effects of orthographic
neighborhood density for words and nonwords.

We furthermore reported two types of novel effects for nonword reading in the lexical
decision task. These effects provide further evidence for lexical activation in the mental
lexicon as a result of the visual presentation of a nonword. First, the current study is the
first to report a true nonword frequency effect in the lexical decision task. Previous studies
approximated the frequency of a nonword through measures of the frequency of either the
real word it was derived from or its orthographic neighbors. These approximations, how-
ever, are relatively crude, which may explain the inconsistent results for such measures in
previous work (Yap et al., 2015; Ziegler et al., 2001; Andrews, 1996; Perea et al., 2005;
Allen et al., 1992). Here, we obtained true nonword frequencies through Google searches.
The analysis of the nonword data revealed a robust inhibitory effect of nonword frequency
with a considerable effect size. Despite our best efforts, we were unable to reduce the effect
of nonword frequency to the effects of one or more other lexical-distributional variables. We
furthermore established that the effect of nonword frequency is unlikely to reflect previous
experience with (a subset of) the nonwords under investigation. For now, we cannot offer
a convincing explanation for the frequency effect for nonwords. Understanding the pro-
cesses that drive the enigmatic nonword frequency effect is an interesting topic for further
research, and promises to shed further light on the lexical mechanisms that drive visual
word recognition not only for words, but also for nonwords.

Second, we observed hitherto unobserved effects of semantic measures for non-
words. The semantic measures under investigation were semantic neighborhood density
and orthography-to-semantics consistency. Both measures were calculated on the basis
of semantic vectors extracted from a semantic space that was generated using fastText
(Bojanowski et al., 2017). fastText generates semantic vectors for words as well as for
component letter n-grams. Semantic vectors for nonwords can be computed through the
addition of the semantic vectors for its component letter n-grams. For the lexical decision
latencies from the blp, the analysis of the data revealed facilitatory effects of semantic neigh-
borhood density (cf. Shaoul & Westbury, 2010; Pexman & Hargreaves, 2008; Buchanan et
al., 2001) and orthography-to-semantics consistency (Marelli & Amenta, 2018; Marelli et
al., 2015; Jared et al., 2017) for words, and novel, inhibitory effects of both predictors
for nonwords. The semantic effects for nonwords indicate that lexical representations are
not a prerequisite for the activation of information in the semantic system. The effects
of frequency, semantic neighborhood density, and orthography-to-semantics consistency re-
ported here pose interesting questions for the further development of models of visual word
recognition.
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