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Abstract 

As otherwise healthy adults age, their performance on cognitive tests tends to decline. This 

change is traditionally taken as evidence that cognitive processing is subject to significant 

declines in healthy aging. We examine this claim, showing current theories over-estimate the 

evidence in supports of it, and demonstrating that when properly evaluated, the empirical record 

often indicates that the opposite is true. 

To explain the disparity between the evidence and current theories, we show how the models of 

learning assumed in aging research are incapable of capturing even the most basic of empirical 

facts of “associative” learning, and lend themselves to spurious discoveries of “cognitive 

decline.” Once a more accurate model of learning is introduced, we demonstrate that far from 

declining, the accuracy of older adults lexical processing appears to improve continuously across 

the lifespan. We further identify other measures on which performance does not decline with 

age, and show how these different patterns of performance fit within an overall framework of 

learning. 

Finally, we consider the implications of our demonstrations of continuous and consistent 

learning performance throughout adulthood for our understanding of the changes in underlying 

brain morphology that occur during the course of cognitive development across the lifespan. 
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Learning is not decline: The mental lexicon as a window into cognition across the lifespan  

As otherwise healthy adults age, their performance on cognitive tests tends to change. 

These performance changes have traditionally been taken as showing that the functionality of 

underlying cognitive processes is subject to significant declines even in healthy aging (Deary et 

al, 2009; Salthouse, 2009, 2011; Singh-Manoux et al., 2012). However, in a recent article 

Ramscar et al (2014) pointed out that it is impossible to determine whether cognitive processes 

actually decline across the lifespan in the absence of models of processing, and without an 

understanding of the way that learning changes the processing demands imposed on the 

cognitive system. In a series of case studies, Ramscar et al showed that, over a range of cognitive 

tasks, once a proper measure of processing load is taken into account, the pattern of performance 

change typically seen across the lifespan can be accounted for without having to invoke 

“declines” in otherwise undefined “processes.” Once learning processes were formally defined, 

the performance of older and younger adults on cognitive tests could be more straightforwardly 

modeled in terms of a set of relatively consistent capacities faced with processing loads of 

increasing size and complexity. 

The central thesis put forward by Ramscar et al’s is that the evidence for cognitive decline 

in healthy minds is weak and that the methods used to argue that our cognitive abilities decline 

critically fail to account for the growing information processing loads that experience brings. 

Since this article was published, many researchers have questioned these claims (see e.g., 

Rabbitt, 2014; Carey, 2014; Brink, 2014). The message coming from these specialist on 

cognitive aging is that there is good evidence that the minds and brains of healthy adults do 

decline, and that these declines occur in ways that belie Ramscar et al’s information processing 

concerns. 
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In what follows, we examine these objections, and show that researchers massively over-

estimate the extent to which the available empirical evidence actually supports claims to the 

effect that cognitive processes decline in the course of healthy aging. Indeed, we present 

evidence that, when properly evaluated, in many case the empirical record indicates that the 

opposite is true:  

First, we show how the models of learning that are tacitly accepted across the aging 

literature are not only simplistic, but that they ignores all of the progress that has been made in 

understanding learning over the past half century. We show that the models of learning assumed 

in aging research are incapable of capturing the most basic of established empirical facts relating 

to simple “associative” learning processes.  

Second, we show how this faulty model lends itself naturally to spurious discoveries of 

“cognitive decline.” We demonstrate how, given the naïve assumptions about learning made by 

psychometricians, analyses of a large, normative Paired Associate Learning (PAL) data set 

appears to reveal that PAL performance in otherwise healthy adults is subject to significant 

declines between 39 and 49 years of age. We show how this conclusion is unwarranted, 

revealing that once a more accurate model of learning is combined with a more faithful 

representation of lexical information, it would seem that far from declining, the accuracy of older 

adults’ representation of the lexicon improves continuously across the lifespan. 

Third, we consider the confirmation bias that prevails throughout the aging literature: we 

suggest that researchers find “declines” because they expect to find them, and because their 

research programs are designed to confirm the “cognitive decline” hypothesis. We identify 

several measures on which performance does not decline with age, and show how more accurate 
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modeling can make sense of these different patterns of performance within an overall framework 

of learning. 

Finally, we consider the implications of our findings, and of our demonstrations of 

continuous and consistent learning performance across the lifespan for our understanding of the 

changes in underlying brain morphology that occur during the course of cognitive development 

across the lifespan. 

 

The nature of lexical learning across the lifespan 

A central part of the argument put forward in Ramscar et al (2014) is that lexical learning 

continues throughout the lifespan.  This raises a question, where is the evidence of this continued 

learning?  As Rabbitt (2014) puts it:  

“Ramscar et al insist that vocabulary tests cannot be appropriate measures because they are 

biased towards [sic] low frequency words and so do not accurately assess older people who 

know more rare words that are not tested. It is questionable whether most older people 

actually do know more rare words than most young adults, but scores on vocabulary tests 

are not the only, or the best comparison. … Perhaps Ramscar et al elide this point because 

of their need to counter a quite different objection that old people generally have only 

equal or even lower scores on vocabulary tests than the young.”  

Ramscar et al (2004) show how some straightforward facts about sampling and the 

statistical nature of lexical distributions (Baayen, 2001) guarantee that vocabulary tests will 

become increasingly less accurate as people get older.  If we disregard vocabulary tests as a 

useful tool for assessing cognitive decline, we are left with Rabbitt's suggestion that older people 

may not actually know more rare words than young people. Does this actually make sense?   
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Consider life as a continuous process of sampling the world.  In infancy, the part of the 

world sampled is highly restricted to the cot, the high-chair, and the family (Pereira, Smith, & 

Yu, 2014).  During the school years, pupils are trained to absorb selected samples of the world at 

a rate far beyond individual experience would allow.  In their twenties and thirties, speakers 

marry, and may have children of their own.  They move to other places, travel more widely, and 

experience an ever-increasing array of technological innovations.  In their sixties, speakers may 

become grandparents, start a new hobby and become expert bridge players, or captains of 

industry.  It seems likely that as their experiences of the world accumulate, speakers will need a 

more diverse and more specialized vocabulary to communicate their experiences to other 

speakers.  In other words, given how experience is sampled over the lifetime, it is extremely 

unlikely that the limited vocabulary acquired by the end of puberty would remain unchanged and 

sufficient for the remainder of life. 
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Figure 1: Proportion correct responses in visual lexical decision for the young and old subjects in 

Balota et al. (1999), plotted as a function of log word frequency in a logistic linear mixed model. 

The old subjects notably outperform the young subjects on low frequency words.    

 

We can supplement this intuitive line of reasoning by an empirical fact.  Figure 1 presents 

the accuracy of young (mean age 21.1 years) and old (mean age 73.6 years) adults in a lexical 

decision task with 2284 words (Balota et al. 1999) as a function of these words' (log-

transformed) frequencies of occurrence in the CELEX lexical database (Baayen et al., 1995; see 

Table A1 in the appendix for details of the corresponding statistical model).   The solid dark gray 
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line represents the young participants, the dashed black line the old participants.  For the highest-

frequency words, both groups perform with comparable accuracy.  As frequency decreases, 

accuracy plummets for the young subjects to approximately chance performance.  And while the 

old participants also make more errors on low frequency than high frequency words, they still 

outperform the young participants by a wide margin.  For the lowest-frequency words, where the 

young subjects are at chance, the older subjects still get 80% of their responses correct.  The 

markedly different accuracy levels of older adults as compared to the younger adults for the 

lowest-frequency words are completely incompatible with Rabbitt's suggestion that the former 

would not know more rare words than the latter.    

Given that vocabulary tests clearly misrepresent what older speakers really know, this 

raises a question: to what extent are current interpretations of scores on other psychometric tests 

equally guilty of distorting the true extent of lexical knowledge in older adults?   As we will now 

show, because learning in the lexicon involves more than simply adding new items to a list, 

current interpretations of scores for other psychometric tests are also guilty of underestimating 

older adults’ cognitive abilities.  

To demonstrate this point, we take as an example “Paired Associate Learning” (PAL), a 

common cognitive performance measure in which people are required to memorize associations 

between two words (e.g., dig-guilty, or lead-pencil). The test is popular as a clinical measure, 

and often used as a means for evaluate learning and memory processes in experimental settings. 

Further, in comparison with other memory measures, researchers consider that, “performance on 

PAL may be of greater prognostic relevance for day to day functioning where the same 

associative abilities are required” (desRosiers & Ivison, 1988). In a typical test, participants hear 

a list of cue (w1) and response (w2) words (e.g., dig-guilty, lead-pencil…) and are then required to 
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produce w2 when given w1 as a cue. Figure 2 plots the performance of 200 30-39 year olds and 

200 40-49 year olds, who provided normative data for forms 1 and 2 of the PAL subtest of 

Wechsler’s Memory Scale (WMS; desRosiers & Ivison, 1988).   

If we were simply to focus on the changes between the items in the performance of the 

thirty and forty year-olds shown in Figure 2, then these data would appear to provide evidence 

that PAL learning capacities decline significantly between ages 39 (M PAL Accuracy = 70%), 

and 49 (M Accuracy = 66%; t(39)=4.793, p<0.0001). This finding, though perhaps surprising, 

would seem to support other claims to the effect that age-related cognitive declines are clearly 

visible after adults reach their mid-forties (Singh-Manoux, et al., 2012). 
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Figure 2: Average by-item performance for adults aged 30-39 and aged 40-49 (50% females in 

each group), tested on forms 1 (Top Panel, N=200) and 2 (Bottom Panel, N=200) of the WMS-

PAL subtest (desRosiers & Ivison, 1988). Performance changes systematically: on average, 

performance differences are greater for harder items than the easier items. 

 

However, in addition to declining performance, these data also clearly show that PAL 

performance changes between the two groups in a systematic fashion: “hard” PAL items appear 

to become proportionally harder to learn over time. This suggests that the initial interpretation 

we suggested, that these data provide evidence of declining learning abilities in early middle-age, 

may be premature: All other things being equal, we might expect that, given the association rate 

in each test is consistent (participants hear each w1 - w2 pair once, repeated across three list 

trials), then if we assume that PAL tests are a straightforward measure of participants’ ability to 

learn associations, “declines” in this ability ought to be consistent across items. 
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However, empirically, it has been shown that association rates (the frequencies at which 

items are encountered together) are insufficient to explain the systematic patterns of behavior 

associated with associative learning. In particular, two additional frequency factors have been 

shown to exert a significant influence on learning in associative tasks: cue background rates 

(Rescorla, 1968; Ramscar et al, 2013a; in the case of PAL, the frequency at which a cue word 

appears absent a response word), and blocking (the predictability of a response in the learning 

context based on prior learning, Kamin, 1969; Arnon & Ramscar, 2013, which in the case of 

PAL, is the predictability of the response word given the cue).  

Further, the skewed distribution of language means that the relative influence of the factors 

that either inhibit (blocking and background rates) or promote learning (association rates) are 

likely to change as learners sample more and more words over time. This is important, given that 

the co-occurrence-rates participants are exposed to in training in a PAL learning study remain 

constant: a pair is heard, and participants have to learn to associate it. This means that unless the 

effects that sampling and prior learning can be expected to have on PAL learning are controlled 

for, it is impossible to know whether changes in PAL performance shown in Figure 2 result from 

increased experience or cognitive declines. 

To illustrate this point, Figure 3 shows what happens when all these factors come into play 

during associative learning in a very simple model of a lexicon. It depicts a small sample lexicon 

containing the stock phrases American – Eagle and Obey – Rules, and the “novel” pairings Legal 

– Eagle and Obey – Eagle.  The plot shows the outcome of learning simulated using Danks 

(2003) equations for the Rescorla-Wagner model (a simple model that still embodies sufficient 

system complexity to account for the basic facts of associative learning; Rescorla & Wagner, 

1972). As can be seen, as the frequencies of the stock phrases increase, the association weight 



Learning is not decline 13 

between Obey and Eagle declines. This is despite the fact that the structure of the lexicon and the 

association rate of Obey - Eagle both remain constant (at a frequency of 1; see the appendix for 

full details, and the R code for this simulation). 

 

Figure 3:  Cue strength for Obey to Eagle as a function of the frequency of two ‘stock phrases’ 

American - Eagle and Obey - Rules, in a small lexicon with the two stock phrases and two 

‘novel’ pairings Legal - Eagle and Obey - Eagle.  The frequency of the novel pairings is always 

1. The plot shows how when learning is simulated using Danks (2003) equations for the 

Rescorla-Wagner (1972) model, the association weight between Obey and Eagle declines as the 

stock phrases’ frequencies increase, even though both the structure of the lexicon and the 

association rate of Obey - Eagle remain constant (at 1). 
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Figure 3 illustrates the consequences of a basic fact about associative learning that has 

been known for around half a century: That the outcome of any single learning trial cannot be 

predicted by considering the association rate that a learner is exposed to on a single trial in 

isolation  (Rescorla & Wagner, 1972; Ramscar et al, 2010). This also explains why it is wrong to 

think that by-item declines in performance in PAL reveal declines in associative learning 

capacities: This faulty inference depends on the assumption that PAL performance is determined 

by association rates alone.  This erroneous assumption, which characterized classical 

behaviorism – and which, disturbingly, still lies at the heart of many contemporary researchers’ 

understanding of learning – has been rejected by all modern learning theories (see Rescorla, 

1988, for discussion of both of these points). 

To try to get a better estimate of the systematic role that the factors that have actually been 

shown to determine the outcome of associative learning are playing in this instance, we 

estimated values for three critical parameters (background, blocking and association rates) that 

can be expected to influence the learning of PAL w1-ws word pairs (these parameters, log 

transformed, were w1 word frequencies, differences in word frequencies expressed as 

frequency(w2)/frequence(w1), taken for the period 1980-1990 from the Corpus of Historical 

American English, COHA, Davies, 2012 and w1-w2 co-occurrence rates, taken from Google). 

When these were entered into a linear regression in order to predict the relative performance of 

20-29 and 30-39 year olds tested in 1988 (plotted in Figure 2) for each word pair in the 

normative PAL data, they accounted for over 65% of the observed variance in performance 

(r=.82, F(4)=19.385, p<0.01). Also, as predicted, our estimated background and blocking rates 
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were associated with lower scores, whereas association rates were associated with higher scores 

(all, p<.01). 

Once the parameters we estimated from the corpus data are entered into the picture, it 

would appear that most, if not all of the difference in PAL performance seen between adults in 

their thirties and forties is due to learning. In particular, it appears that over time, learning hard 

PAL w1-w2 word pairs gets harder as language experience increases. As Figure 3 helps illustrate, 

this is because as learners master the informative details of the lexicon, the learning of a 

nonsensical link between two unconnected words must increasingly compete with prior learning 

to the effect that this link is nonsensical. It is worth noting here is that one reason for this is that 

the learning of these kinds of dissociations is an important part of discrimination learning. 

Virtually all of the models of associative learning that have been developed in the past half-

century actually implement discriminative learning principles, because it is these principles that 

actually appear to govern the processes that we still colloquially refer to as, “associative 

learning” (see Rescorla, 1988; Ramscar et al, 2010).  
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Figure 4: Mixed-effects slope estimates for the three parameters that estimate learnability 

constraints on the by-item PAL performance of the full set of 60-69, 50-59, 30-39 and 20-29 

year-old adults in the normative data set (desRosiers & Ivison, 1988). Larger slope values 

indicate a greater degree of alignment with the structure of the language. All predictor effects 

and interactions in the model are significant, and all slopes (except the slope for blocking (P2) 

for the youngest age group) are significantly different from 0 (see Table 2 in the appendix). 

There is no significant main effect of age in the model. This analysis shows how lifelong PAL 
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performance patterns reveal an ever-growing understanding of the systematic structure of the 

English lexicon as adult age increases, rather than any decline in learning capacity. 

 

Our finding that many of the changes in PAL learning performance observed in early- 

middle-age are better attributed to learning than cognitive decline raises a further question: To 

what extent are the changes seen in PAL learning across the rest of the adult lifespan the product 

of the same, systematic learning factors?  

To begin to address this question, we analyzed the full set of normative PAL data collected 

by desRosiers & Ivison (1988). The data was collected from 1000 adults, 50% of whom were 

men and 50% women. These were equally divided into the age groups 20-29, 30-39, 40-49, 50-

59 and 60-69, and each participant completed either form 1 or form 2 of WMS PAL, such that 

each of data point represents the average score of 100 tests. The participants in desRosiers & 

Ivison’s study were patients who had been hospitalized for non-neuropsychiatric conditions, and 

thus were tested in the same, relatively age-neutral context. 

Along with our three corpus based learning parameters, these data were entered into a 

linear mixed effects model with word pair as random-effect factor.  The details of this model are 

reported in the appendix (Table A2). As can be seen from the plot of mixed-effects slope 

estimates in Figure 4, the impact of the factors that basic learning theory predicts will inhibit the 

learning of an association – blocking and background rates – grow systematically across the 

lifespan, as does the influence of the factor that basic learning theory predicts will promote the 

learning of an association (the association rate). In other words, our analysis of Paired Associate 

Learning indicates that the changing performance patterns that have been observed across the 

lifetime in PAL tasks are evidence of an ever-growing understanding of the systematic structure 



Learning is not decline 18 

of the English lexicon that develops as age and experience grow. Not only do these patterns not 

support the idea that older adults’ learning capacities are in decline, they are also clear evidence 

that, in fact, learning capacities are both retained and fully engaged across adulthood. 

  

Why decline appears to be in the eye of the beholder. And why a cognitive account of lifelong 

cognitive development matters 

Ramscar et al (2014; see also Ramscar, 2014) point to another serious shortcoming in 

current approaches to the study of cognitive development in adulthood: whether older 

participants’ performance on even the simplest of cognitive tests improves or declines appears to 

be a function of the context in which participants are tested.  Consider, for example, the FAS 

task, in which people are asked to generate as many words beginning with F as they can in 60 

seconds, followed by as many words beginning with A in 60 seconds, followed by as many 

words that begin with S. (A couple of rules govern the words that are allowed as responses in the 

test: Proper names like Steve or France are not allowed, nor are different versions of the “same” 

word, such as friends, friendly, etc. ) 

In a meta-analysis of 134 studies, Ramscar et al found that while older participants 

outperformed younger adults at FAS recall in smaller studies, in very large surveys of the elderly 

population, older participants’ performance declined as the total number of people tested in a 

study increased. Moreover, this effect was not due to regression to the mean (the analysis 

presented in Ramscar et al, 2014, controlled for this); Instead, it appears that in the data reported 

in the literature, there is a clear relationship between the FAS test scores of older adults and the 

number of older adults tested. 
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Test performance is both influenced by context, and can vary widely across cohorts (see 

e.g., Lynn, 1982; Flynn, 1987; Teasdale & Owen, 2005). However, although there is a large 

historical literature devoted to these very real problems (Schaie, 1959; 1973; 1975; 1977; 1988), 

and despite the fact that the researchers who employ the current generation of psychometric 

methods are careful to acknowledge that they cannot conclude anything about causality from the 

results of any given test, it appears that in practice whenever changes are observed on the 

correlated results of these tests, the temptation for researchers to interpret them causally – as 

evidence of decline – invariably proves too strong to resist. Although the cognitive aging 

literature contains a huge body of work that purports to chart the supposed declines in “cognitive 

abilities” that are assumed to undermine the minds of adults as they age, the fact is that this 

literature contains little more than a correlational record showing that scores change on tests that 

are incapable in themselves of supporting causal inferences about the reasons for change (Naveh-

Benjamin & Old, 2008; Deary et al, 2009; Salthouse, 2009; Salthouse, 2011; Singh-Manoux et 

al., 2012). 

Our analysis of PAL learning highlights the worrying shortcomings of these current 

methodologies. The introduction of even the most elementary discriminative learning model into 

an analysis of Paired Associate Learning reverses the standard, purely correlational interpretation 

of PAL test scores. Systematically lower scores do not reveal decline, but rather, they simply 

show a pattern of changes that any cognitively plausible model of lexical learning would predict. 

Indeed, the same patterns of change among lexical associations with experience revealed by our 

analysis can be observed in two-year olds (Ramscar et al, 2013a).  
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Figure 5: Performance of two control groups (group 1 N=23; M age 19.4 years; group 2 N=23; 

M age 57.4 years) in Hargreaves et al (2012). Young adult performance is plotted as a reference, 

and the performance of the older adults reflects the change in their performance against this 

baseline. The leftmost two bars represent estimates of the relative amount of print exposure each 

group has experienced, and the remaining bars plot performance in tests of Digit Symbol recall 

(recalling strings of alphanumeric characters), generating words beginning with F, A, S and UN, 

animal naming, and anagram solving. 

 

These points matter a great deal. Figure 5 plots the performance of a group of 23 19 year 

olds with a group of 23 57 years olds on a range of measures of “cognitive performance” (from 

Hargreaves, Pexman, Zdrazilova, & Sargious, 2012). There are several things to note about this 

data:  
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First, it was an experimental study in which participants were carefully matched on a range 

of control variables, including the number of participants tested in each group.  

Second, it was study of expertise, rather than a study of “aging”. There are many good 

reasons to believe that this matters, most notably that making elderly participants aware of their 

age and of the stereotypes associated with aging, can inhibit their performance on tests (Steele, 

1997; Hess et al, 2003; Hess & Hinson, 2006; Hess, Hinson, & Hodges, 2009).  

Third, while, perhaps unsurprisingly, older adults’ print exposure is greater than that of the 

younger adults, it is notable that of the 7 cognitive measures tested, the older group out–perform 

the younger group on 6 of them; And even if we collapse all of the FAS related tasks into one, 

the fact is that the older adults outperform the young on 3 out of 4 of these measures. Further, 

while the younger adults performance on digit symbol is slightly better than that of the older 

adults, the younger adults performance on the anagram task is vastly inferior to that of the older 

adults. 

Further evidence for the inferior sensitivity of younger adults to the distributional 

properties of the language can be gleaned from the lexical decision data discussed above, which, 

indicated that adults perform the task more accurately (Figure 1).  Figure 6 presents some central 

partial effects in a generalized additive mixed model fitted to the response latencies, with 

younger subjects in the left panels and older subjects in the right panels.  The top panels present 

the effect of frequency.  As expected, reaction times are longer for lower-frequency words.   

Older subjects slow down slightly more than younger subjects for the lower-frequency words.   

Before we attribute this to cognitive decline, we should first consider the lower panels, 

which present contour plots for the interaction of two latent variables, PC1 and PC2.  Both latent 

variables capture a sizable propertion of the variance among 10 highly correlated variables for 
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orthographic consistency (for details, see Baayen, Feldman, & Schreuder, 2006).  The non-linear 

interaction of these two (orthogonal) latent variables was modeled with a tensor product smooth 

(Wood 2006, see the appendix Table A3 for the full model).  Importantly, the interaction for the 

younger adults fails to reach significance, in contrast to the interaction for the older adults.  Note 

that the contour lines for the younger adults are 0.005 log RT units apart, whereas those for the 

older adults are 0.01 log RT units apart.  In other words, the younger adults are beginning to 

show, albeit very weakly, the pattern that characterizes the performance of the older adults.   It is 

the older adults which evidence clear fine-grained sensitivity to the consonances and dissonances 

between spelling and sound in English.   

One difference between older and younger subjects not shown in Figure 6 is that older 

subjects have longer RTs compared to younger subjects.  Since older participants’ judgments are 

more accurate, we are observing a phenomenon known as “speed accuracy trade-off”.   The 

slower responses of older adults are, therefore, not compelling evidence for degraded 

performance.   Indeed, applying the drift-diffusion model to speed and accuracy data indicates 

that the quality of information processing is not impaired in healthy aging and that slow downs in 

aging are largely attributable to other factors (Ratcliff, Thapar, & McKoon, 2011; 2010), such as 

non-decision time (e.g., motor movement) and boundary separation (i.e., the degree of 

cautiousness in responding). 

Another possibility is that older and younger adults are processing different information in 

completing this task.  Ramscar et al. (2014) presented a large-scale simulation study using the 

Rescorla-Wagner equations, which correctly predicted the pattern of slower responses to lower 

frequency words observed in older adults. Figure 7 plots the simulated and empirical reaction 
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times reported in Ramscar et al. (2014) in a way that allows the models’ predictions – as well as 

the empirical effects just described – to be easily apprehended. 

 

 

Figure 6.  Upper panels: the partial effect of log frequency on log response latency.  Younger 

adults (left) have shorter latencies for the lower-frequency words compared to older adults 

(right).  Lower panels: the nonlinear interaction of two latent variables for orthographic 
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consistency.  The interaction does not reach significance for the younger adults, but is highly 

significant for the older adults, which reveal enhanced sensitivity to the distributional properties 

of sound-meaning mappings in English. 

 

 

Figure 7. Left panel: fit of a generalized additive model to the simulated response latencies for 

the 2284 words tested by Balota et al. (1999) taken from the old and young models presented in 

Ramscar et al (2014). Right panel: fit of a generalized additive model to the empirical response 

latencies for the same word taken from young (mean age: 21.1) and old (73.6) adults (Balota et 

al, 1999). It is well established that lexical decision responses are slower for lower- frequency 

words (e.g., “whelp”) than higher-frequency words (“where”).   This overall effect of frequency 

is present for both young and old adults and in the models. However, while frequency effects 

asymptote at higher frequencies in both models, they also level off again at the lowest 

frequencies in the younger model, a pattern also observed in the empirical data (see Figure 6 for 

more detail). 
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 These models allow us to develop causal hypotheses about the nature of information in 

this task, and to explain why these particular patterns of response latencies emerge. (Note, simply 

saying, “because frequency,” hardly counts as a causal hypothesis: saying that lower frequency 

words are read slower because they are lower in frequency – and we know more frequent words 

get read faster – is a re-description of the data, not an explanation.) First, note that the variance in 

model's predicted simulated RTs for younger and older adults in the lower frequency-range 

(Figure 7, left panel) is entirely a function of the weights the models learned from the training 

sets for the two age groups, which are set without free parameters (save for the selection of the 

size of the training samples themselves). These weights connect letter conjunctions (n-gram 

cues) in the words the model reads with the lexemes that humans and the models have to 

discriminate in reading (i.e. they represent the learned connection between the letters d o and g 

and the lexeme dog).  

In the models, the n-gram cues are initially undifferentiated, and their learned values are 

set competitively, as the models seek to predict words from the letters they ‘read.’ The logic 

underlying this process can be intuitively grasped by considering the different cue values of 

letters in scrabble: if you have Q and A but no U, QA is an excellent cue for the legal scrabble 

words qaid, qanat and qat; however, D and I appear in many words, so DI only weakly supports 

individual words like oxidize, dim and odium.  

 

 

Table 1. The 20 lowest frequency items in the set used to train the models and test older and 

young adults; BLASH has the lowest frequency of these items, and SKULK the highest. As can 



Learning is not decline 26 

be seen, many of the letter bigrams in this set of words are fairly rare in English (see also, 

Nusbaum, 1985). 

 

  BLASH   SOUSE   CROME   VELDT 

  SCHNOOK   WHIG   GIBE   SLOE 

  LETCH   FILCH   LISLE   CONK 

  ZOUNDS   RHEUM   FLAYS   FRAPPE 

  JAPE   PARCH   SPLOTCH   SKULK 

 

 

 As Table 1 shows, when it comes to the test (and hence the training) set that produced the 

data plotted in Figure 6, the lower frequency words contain significantly more uncommon (low 

frequency) n-grams than the higher frequency words (Ramscar et al., 2014). This means that, 

while in a smaller vocabulary, these low frequency n-grams tend to be very good cues to a given 

lexeme, as a vocabulary grows, the probability that new words will also contain these n-grams 

increases (suppose someone who knows qaid, learns qanat playing scrabble, or hears that qantas 

is the name of an airline), then cue competition will increase (this is the same process that 

produces the changes in the weights of the w1 cue obey to the w2 response eagle in Figure 3). 

Thus, in the model, the slower reaction times for lower frequency words for older speakers 

are the result of learning, and reflect the increasing demands imposed by having to discriminate 

between more and more lexemes composed of the same set of alphanumeric cues, which is in 

turn reflected in the increased accuracy of older participants in the lexical decision task. Or, to 

put it another way, while we may learn more and more words across our lifetimes, we do not 
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learn any more letters; And although we can arrange letters in ways that yield more cues, even 

this process is not infinite. This means that over time, learning more vocabulary items must 

inevitably increase the information processing demands associated with letter cues. (This point 

also raises developmental issues, which we return to below.)  

We should acknowledge that the models are hypotheses, and that compared to the 

complexities of actual human experience, their training is absurdly sparse. However, against this 

we should note that the learning algorithm in the model at least approximates our best 

understanding of how brains learn (Schultz et al, 1997; Schultz, 2006; Daw, Courville & Dayan, 

2008; Daw et al, 2011), and that in practice, even noting their limitations, these models do seem 

capable of providing insights into human learning that are useful, if not exactly “right” (Box & 

Draper, 1987; see Ramscar & Yarlett, 2007; Gureckis & Love, 2010; Ramscar et al, 2010; 

Ramscar et al, 2011; Ramscar et al, 2013a; Ramscar et al, 2013b; Ramscar et al, 2013c; Arnon & 

Ramscar, 2013; Baayen et al, 2011; Baayen, Hendrix & Ramscar, 2013). 

Moreover, some systematic insights into the complexities of learning and aging can only 

be gotten from a useful hypothetical model. To return to the empirical data plotted in Figure 5, it 

clearly suggests that there may be an age-related interaction between digit symbol performance 

and anagram solving: a model provides a framework in which to examine whether a causal 

relationship between these facts actually exists. For example, the model we just described 

suggests that the slowing in older adult’s lexical decision responses is the product of loading 

more and more lexical outcomes on a relatively finite set of combinations of letter cues (see also 

Anderson, 1974).    

We might expect that this will lead to (at least) two outcomes: First, just as virtually any 

PAL w1 - w2 pair will become more dissociated as lexical learning increases (Figure 3), we can 
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expect that the association between virtually any two letter unigrams will decrease in exactly the 

same way for very similar reasons. This means that increased lexical learning will inevitably 

make the digit symbol task harder in the same way that it makes learning specific PAL pairings 

harder. However, given that the dissociations in letter n-grams are driven at least to some extent 

by their being learned as cues to more and more words, it follows that increased lexical learning 

will mean that any given n-gram is likely to cue more and more lexemes. Given the role of 

prefrontal cortex (PFC) in filtering response behavior (Shimamura, 2000; Chrysikou, Weber, & 

Thompson-Schill, in press), and the way that learning alters the dynamics of the responses that 

PFC serves to filter (Ramscar & Gitcho, 2007; Thompson-Schill, Ramscar & Chrysikou, 2009) 

and helps modulate perseverative behavior (Ramscar et al, 2013b), it is hardly surprising that 

learning to that associate more lexical outcomes with n-grams serves to improve people’s ability 

to solve anagrams, or that older scrabble experts should be particularly adept at this (Hargreaves 

et al, 2012). 

Thus, just as a model can help us understand why there is an interaction between speed and 

accuracy in lexical decision with age, and why slower lexical decisions speed do not necessarily 

betoken “decline,” so it can also help us understand why there is an interaction between digit 

symbol accuracy and anagram solving with age, and why performance on the two measures in 

the latter is as inextricably linked as speed and accuracy “performance” in the former. 

 

Why better functional models of behavior across the lifespan are necessary to understanding the 

aging brain 

An improved functional understanding of the behavioral changes we see in healthy adults 

as they age is necessary to determining which (if any) of these changes can be considered 
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“decline.”  Model-based analyses (Davis, Love, & Preston, 2012a; 2012b; ,Turner et al., 2013) of 

brain imaging data and model selection methods (Kriegeskorte  & Kievit, 2013; Mack, Preston & 

Love, 2013) have proven invaluable in interpreting brain activity for younger adults. If we are to 

understand the aging brain, better functional models will also need to be developed, applied, and 

evalauted in this domain. Thus, for example, studies employing a range of imaging techniques 

and a variety of tasks have revealed a posterior to anterior shift in patterns of task-related 

activation as adults age, and a concomitant decease in the degree to which tasks trigger activation 

patterns that are lateralized to one (in particular the left) hemisphere (Reuter-Lorenz et al. 2000; 

Cabeza et al. 1997, Grady et al. 2006; Cabeza 2002; Cabeza et al 2002; Cabeza et al 2004; see 

Park & Reuter-Lorenz, 2009 for a review).  In the cognitive neuroscience literature this shifting 

pattern of activations is thought to reflect the results of a “scaffolding” process, in which contra-

lateral and frontal areas step in to pick up the slack in the processing capacity of left-lateral and 

posterior areas that occurs in “direct response to the magnitude of neural insults that occur with 

age,” (Park & Reuter-Lorenz, 2009).  

Although this idea is widely accepted, the literature offers no details (nor even detailed 

speculations) as to quite how it is that frontal areas come to be aware of the plight of their 

insulted brethren in posterior regions (it seems reasonable to assume that dead cells don't talk), 

nor are accounts forthcoming of how it is that ensembles of neurons in functionally distinct areas 

of cortex are able to acquire the tunings that enable them to replicate the functions of circuits in 

other regions that have succumbed to the ravages of time.  Finally, nor does the literature offer a 

suggestion, let alone a convincing explanation, of why it is that, for example, posterior regions 

are systematically more susceptible to insults than anterior regions across the entire human 

population as it ages. 
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 By contrast, consider the model of the relationship between digit span performance and 

anagram solving we just described. It outlines a (clearly over-) simple feed-forward network in 

which the perception of letter cues in turn activate lexemes, and, in the case of anagram solving, 

any activated lexemes are then filtered along with other task relevant information in prefrontal 

cortex in order to generate a response. Over the lifetime, the model thus predicts a systematic 

pattern of changes will occur as a learner’s lexical experience grows: First, in posterior regions 

associated with reading letter forms, such as left posterior occipitotemporal sulcus (pOTS; Mano 

et al, 2013) the model predicts that more experience will lead to less neural activation, because 

learning and cue-competition will increasingly serve to tune n-gram representations (this is 

consistent with findings from imaging studies, which show stronger activation of the left pOTS 

to pseudowords and low frequency words as compared to high frequency words; Kronbichler et 

al. 2004, 2007; Bruno et al. 2008; Schurz et al. 2010; Mano et al, 2013); Second, since these 

increasingly tuned n-gram representations will become associated with more and more lexemes, 

which will activate when they are activated, the model predicts that greater experience will result 

in more activation of the anterior regions associated with lexical processing itself, such as the 

superior temporal gyrus (STS), inferior frontal gyrus (IFG) and PFC (see e.g., Friederici, 2011), 

because activating increasingly specialized n-gram representations will result in the activation of 

increasingly larger sets of lexemes.  

That is, a simple functional model of reading that incorporates learning can predict and 

explain the interaction between digit span performance and anagram solving and provide an 

account of the posterior to anterior shift in activation during lexical processing without having to 

make the many dubious assumptions involved in theories of “neural scaffolding.” Moreover, the 

model we have outlined does so in ways that are highly compatible with our best understanding 
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of the functions of the brain regions involved. Moreover, given that this model does not 

automatically assume that changing patterns of activation are evidence of “neural insults,” it is 

more consistent with biological models of brain aging, which have revealed that the brains of 

healthy adults do not experience significant cell loss as they age, nor do they undergo dramatic 

changes in neuronal morphology (in a recent review, Barnes & Burke, 2006, describe the widely 

held beliefs to the contrary as “the myth of brain aging”.)  

The patterns of change in neuronal morphology over the lifespan are both more complex 

and more puzzling than the notion of “brain atrophy” embraced by the scaffolding hypothesis 

supposes. Most of the typical changes in brain morphology that are observed in healthy aging 

involve declines in the density and organization of neuronal dendrites and spines (gray matter) 

and axons (white matter). Although the typical pattern of change that is usually observed in 

many areas of the dorsal, frontal, and parietal lobes in adulthood involve reductions in grey 

matter density, in some brain areas, such as the cingulate gyrus, the density of grey matter 

appears to remain consistent across the lifespan in healthy adults (Sowell et al, 2003). Moreover, 

in some brain areas, such as the parahippocampal gyrus, there is evidence of significant dendritic 

growth in normal human aging (but not in senile dementia, Buell et al, 1979; 1981).  

While it goes without saying that the complex and systematic pattern of changes that are 

actually seen in neural morphology are not going to be explained without the development of 

functional models of what brain systems actually do, the need for good functional models of 

cognitive processes is particularly acute because given the changes that typify aging in healthy 

brains, it is extremely difficult to disentangle “declines” in brain function from the effects of 

learning. This is because learning is itself reflected in neuronal morphology as changes in the 

density and composition of grey and white matter (see e.g., Merrill et al, 2001; Zuo et al, 2005; 
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Rapp et al, 1996; Flood et al, 1991, 1993; Barnes & Burke, 2006; Zatorre, Fields & Johansen-

Berg, 2012).  

It follows from this that in order to be sure that all of the changes in neural morphology 

that ones sees in a healthy brain are insults, rather than signs of learning, one first needs a 

functional model of “normal” learning and processing. For example, studies of 11 – 17 year-olds 

have revealed patterns of changes in gray and white matter densities that are remarkably similar 

to those associated with aging (Alemán-Gómez et al, 2013). Should these findings be interpreted 

as a marker for the (extremely) early onset of age-related declines in neural plasticity, or as 

ordinary, business-as-usual learning? 

Similarly, consider that more extensive age-related reductions in grey matter density are 

typically observed in the posterior temporal cortex in the left (as compared to right) hemisphere 

(Sowell et al, 2003).  Are these differences, which are particularly evident in posterior language 

areas, really just the result of simple (and presumably random) insults, and atrophy caused by 

“brain aging?” While it is, of course, possible that they are, it seems highly likely that, since that 

language is one of the most extensive functional systems any brain ever learns, at least some of 

the systematic changes in neuronal morphology seen in posterior temporal cortex reflect the 

effect of learning this system. If so, then this means that, again, the process of distinguishing 

learning from decline – if indeed there is decline in healthy brain aging – is likely to be far more 

subtle and complex than the literature currently acknowledges. 

 

Our understanding of lexical processing relies on our understanding lexical learning 

Rabbitt (2014) points out that our assumption that greater information processing loads 

result in slower processing appears to be confounded by empirical results that, in comparing 
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across people of the same age, as opposed to between people of different ages, reveal that people 

who have larger vocabularies often perform better than people with smaller vocabularies.  

“people of any age whose brains are so stuffed with words that they can produce more 

names of animals within a fixed time also produce words in other categories 

correspondingly faster and more accurately. This does not support the Ramscar hypothesis 

that words are retrieved more slowly from a large vocabulary.” (Rabbitt, 2014).  

The reason these findings do not contradict our central hypothesis is, of course, that the 

mind and brain are not fixed systems:  

plasticity is not an occasional state of the nervous system; instead, it is the normal ongoing 

state of the nervous system throughout the life span. A full, coherent account of any 

sensory or cognitive theory has to build into its framework the fact that the nervous system, 

and particularly the brain, undergoes continuous changes in response to modifications in its 

input afferents and output targets. (Pascual-Leone et al, 2005) 

It goes without saying that learning changes the brain. Just 7 days training in something as 

inconsequential as juggling is sufficient to produce visible changes in gray matter density and to  

the organization of white matter pathways in the occipito-temporal areas associated with the 

processing of complex visual motion (Draganski et al, 2004; Driemeyer et al, 2008); notably, 

these patterns of change are even visible in elderly participants (Boyke et al, 2008; albeit that the 

elderly learn less well on average over the same time frame).  

Because learning changes the brain, prior learning always impacts subsequent learning. As 

our case study of PAL learning demonstrated, there is no such thing as “learning” in a vacuum. 

This in turn means that a full, coherent account of lexicial processing across the lifetime can’t 

simply consider the effects of having a large vocabulary in a vacuum: In order to understand the 
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interaction between experience, vocabulary size and processing, one has to consider how people 

end up with different sized vocabularies, and how this might affect learning and processing at 

different stages of linguistic development.  

Studies of children clearly show that, consistent with Rabbitt’s observation, larger 

vocabulary scores actually predict feaster lexical processing in childhood. Children with larger 

vocabularies process words faster than children with smaller vocabularies (Fernald & Marchman, 

2012; Bion, Borovsky & Fernald, 2013). Perhaps unsurprisingly, these studies have also shown 

that vocabulary scores and processing speeds are highly correlated with the amount of language a 

child is exposed to (Fernald & Marchman, 2012; Bion, Borovsky & Fernald, 2013; Weisleder & 

Fernald, 2013; Fernald, Marchman, & Weisleder, 2013). Moreover, as Hart & Risely (1995) 

revealed in their landmark studies, depending on the social environment a child grows up in, the 

amount of language she hears can differ dramatically.  

These points are of particular importance when we are dealing with human brains, because 

in children, not only will learning be having an impact on the local morphology of areas 

processing the various factors that contribute to behavior, but also because the maturation and 

development of the overall structure of the human brain is occurring throughout childhood 

(Ramscar & Gitcho, 2007; Thompson-Schill, Ramscar & Chrysikou, 2009). Given what we 

know about the way brains learn and develop, it seems at least reasonable to suppose that 

children who are exposed to large amounts of language develop much richer neural networks in 

the areas involved in lexical processing than children whose linguistic experience is 

impoverished. In developing the model we used to predict lexical processing speeds above, we 

considered the relation between network density and processing speed, and, in theory at least (in 
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practice, we should acknowledge that this is a free parameter), the model predicts that dedicating 

more processing hardware to a task in the brain will lead to faster processing speeds. 

Ultimately, we want to be able to do is integrate the many strands that influence the 

development of neural networks in the maturing mind, and the way processing in these networks 

responds to information gains in mature minds. We don’t pretend for a second that our models 

are even close to doing all this. Yet consider the complexity involved in the task we just 

described, and in the interactions between experience, weights and learning in the analyses and 

simulations we described above. However simple and flawed the various models presented 

above are, they at least offer insight. 

This observation highlights an important point in this debate: Researchers in the brain and 

cognitive sciences are engaged in a tortuous process of trying to reverse engineer a complex 

physical information processing device. Yet the simple fact is that very few researchers in the 

field have any training in information processing systems, and of the few that do, most have 

training at the software rather than the hardware end. Most researchers have only the dimmest 

idea how increases in data and task complexity impact information processing in the physical 

systems that actually do the processing. While it is clear that the brain is not a computer in a 

straightforward sense, the fact is that our best models of neural information processing are based 

on machine information processing, and it seems highly unlikely that a “no model” approach will 

lead to meaningful progress in our search to understand the mind, and the effects of age on it.  

 

Conclusion: Learning is not decline 

Do the ravages of time inevitably result in declines in cognitive processing in otherwise 

healthy brains? We remain open to the possibility that the answer to this question is, “yes.” What 
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we have sought to show above is that, when it comes to aspects of lexical learning where we now 

can quantify the environment in which learning takes place (in large part thanks to the 

development of large corpora), once one controls for the effects of learning on performance, 

there is precious little variance left to be described in terms of “decline.”  Not only are the 

changing patterns of performance observed in paired-associate learning better accounted for by 

learning models than by vague notions of “cognitive decline,” but detailed comparison of the 

specifics of those performance patterns suggests that instead of declining with age, older adults’ 

lexical knowledge in fact becomes more and more attuned to the information structure of the 

lexicon. 

Similarly, we have shown that if one simply attends to speed in lexical decision tasks, one 

will inevitably find evidence of decline. Whereas if one integrates a measure of accuracy into 

one’s analysis, a different picture emerges: a picture in which an improvement in one dimension 

– accuracy – is shown to come at a cost in another, speed.  

In one sense, the findings we report are hardly surprising: they simply suggest that one 

rarely gets something from nothing, and that actions have reactions, and these are hardly new 

ideas. However, we would suggest what our findings reveal about our folk theories of the mind, 

and of the effect of aging on the mind ought to surprise us: It would appear that many of the 

implicit assumptions that serve to underpin received ideas about cognitive declines involve the 

idea that some things – especially learning – ought to come for free, and that some actions – 

especially the acquisition of knowledge – ought not to have a reaction. Our findings do not only 

undermine these implicit assumptions, they also undermine the muddled thinking that is 

embodied in received ideas about cognitive decline, both in the literature, and in society more 

generally. 
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We have sought to show how many of the tacit, over-simplified assumptions about the 

nature of learning in the literature are leading researchers to seriously overestimate of the degree 

to which cognitive function declines with age. We would not wish to argue that this means that 

functionality does not change. For instance it may be that a side-effect of some kinds of prior-

learning is that subsequent learning is inhibited in ways that, essentially, amount to functional 

losses, in much the same way that children learning of a native sound system functionally 

impedes the later learning of non-native phonetic contrasts (Werker & Tees, 1984). Rather, we 

would suggest that a better understanding of learning can do much to assist our understanding of 

cognitive functions themselves (see e.g., Baayen et al, 2011), and the way these functions 

develop across the lifetime. 

Finally, in relation to this last point, we should reiterate why all this is important. In 

numerous studies, Carol Dweck and her colleagues have shown how people who believe that 

their abilities to can be improved through hard work learn far better than those who think that 

their abilities are fixed (Dweck, 2006, 1999; Dweck & Leggett, 1988; Yeager & Dweck, 2012; 

see also Mangels et al, 2012; Rattan, Good  & Dweck, 2012; Dweck et al, 1978).  Since it is 

clear from the findings we present here that people’s ability to learn stays with them at all ages, 

and from the work of Dweck and colleagues that thinking of ability as a fixed factor has an 

adverse influence on children and younger adults' ability to learn, we can only shudder to think 

what the pervasive mythology of “cognitive decline” is doing to older adults’ ability to adopt a 

positive mindset, or to believe that their efforts can lead to improvement. 
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Appendix 

 

Table A1:  Fixed-effects estimates in a mixed-effects logistic regression model with word as 

random-effect factor fitted to the visual lexical decision latencies of old and young participants.  

Data available in the languageR package (Baayen, 2008), dataset “english”.   Model fitted with 

the glmer function from the lme4 package (Bates et al, 2013).  

 

Fixed effects: 

                                    Estimate  Std. Error  z value   Pr(>|z|) 

Intercept                            1.40760     0.07432   18.940   < 2e-16 

WrittenFrequency                    0.36847     0.01515   24.320    < 2e-16 

AgeSubject=young                   -1.23280     0.05348   -23.053    < 2e-16 

WrittenFrequency:AgeSubject=young  0.06914    0 .01220     5.666   1.46e-08 

 

 

R code for the simulation of the PAL task: 

 

lex = read.table("obeyRulesLex.txt", T) 

 

lex 

 

              Cues    Outcomes  Frequency 

 

1  Context_American     Eagle          1 

2      Context_Obey      Rules         1 

3      Context_Obey      Eagle          1 

4     Context_Legal      Eagle          1 
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ibrary(ndl) 

wmlist = list() 

for (i in 1:50) { 

  cuesOutcomes = lex 

  cuesOutcomes$Frequency[1:2] = rep(i, 2) 

  wmlist[[i]] = estimateWeights(cuesOutcomes) 

  } 

 

frequencies = 1:50 

strength = sapply(wmlist, FUN=function(m)return(m[4,1])) 

plot(frequencies, strength, ylim=c(-0.5, 0),type="l",  

  xlab="frequency of the stock phrases", 

  ylab="cue strength of Obey and Eagle") 

  abline(h=0, col="darkgray") 

 

Table A2: Coefficients in a linear mixed effects model (with Item as random-effect factor) for 

the results plotted in Figure 4. Slope coefficients estimate the slopes for each age group 

separately. The t-tests evaluate whether a slope is zero.  A separate analysis using treatment 

contrasts (not shown) indicated that all interactions were highly significant.  F1: frequency of the 

first word (background rate); P2: ratio of the frequency of the first and second word (blocking); 

Google: google frequency of the first and second word pair (association rate). 

 

                  Estimate Std. Error t value 

Intercept          2.55064    0.68220   3.739 

Sex=Male          -0.10740    0.02211  -4.858 

F1:AgeGroup20     -0.36897    0.14189  -2.600 

F1:AgeGroup30     -0.55493    0.14189  -3.911 

F1:AgeGroup40     -0.60279    0.14189  -4.248 
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F1:AgeGroup50     -0.65100    0.14189  -4.588 

F1:AgeGroup60     -0.73176    0.14189  -5.157 

P2:AgeGroup20     -0.80059    0.41103  -1.948 

P2:AgeGroup30     -1.08672    0.41103  -2.644 

P2:AgeGroup40     -1.23984    0.41103  -3.016 

P2:AgeGroup50     -1.28778    0.41103  -3.133 

P2:AgeGroup60     -1.44944    0.41103  -3.526 

Google:AgeGroup20  0.34482    0.06214   5.549 

Google:AgeGroup30  0.46774    0.06214   7.528 

Google:AgeGroup40  0.50119    0.06214   8.066 

Google:AgeGroup50  0.53815    0.06214   8.661 

Google:AgeGroup60  0.59641    0.06214   9.599 

 

 

Table A3: Specification of the generalized additive mixed model predicting log response latency 

in visual lexical decision from age, log frequency, and two latent variables for orthographic 

consistency. 

 

Parametric coefficients: 

                         Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)  6.661213    0.001773   3757.7   <2e-16 

age=young   -0.221721   0.001862   -119.1    <2e-16 

 

Approximate significance of smooth terms: 

 

                                                                      edf    Ref.df        F   p-value 

smooth frequency for age = old                     6.555  7.290 218.335  < 2e-16 

smooth frequency for age = young                 6.245  6.975  229.127  < 2e-16 

tensor product PC1 x PC2 for age = old         7.081   8.147    6.804  5.62e-09 
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tensor product PC1 x PC2 for age = young     3.829  4.147    2.122     0.073 

random intercepts word                                  341.173  2192 1.601  < 2e-16 


