
Strategies for addressing collinearity in multivariate linguistic data1

2

Fabian Tomaschek, Peter Hendrix, and R. Harald Baayen3

Department of General Linguistics, University of Tübingen, Germany4
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1. Introduction25

Response measures in linguistics and phonetics are often a function not of a single pre-26

dictor but of many predictors jointly, reflecting a move away from mono-causal to multi-27

factorial explanations. For instance, reductions and deletions in speech have been shown28

to correlate with a range of measures which include frequencies of occurrence and condi-29

tional probabilities at word and segment level (among others Jurafsky et al., 2000; Aylett30

and Turk, 2004; Gahl, 2008; Bell et al., 2009; Tremblay and Tucker, 2011; Priva, 2015).31

For example, Tremblay and Tucker (2011) used no less than 18 such measures to predict32

the durations of four-word sequences. Typically, many of the covariates included in these33

analyses serve as controls for potential confounds with predictors of central theoretical34

interest.35

When predictors are completely uncorrelated and fully orthogonal, the results of a36

multivariable regression model and separate regressions with one predictor each will be37

virtually identical. Multiple regression comes into its own for data with non-orthogonal38

predictors. For such data, it serves as a mathematically principled arbiter for teasing39

apart relevant from irrelevant predictors. However, when predictors are strongly corre-40

lated, i.e., for collinear data, this arbitrage tends to result in counterintuitive and unin-41

terpretable coefficients (Farrar and Glauber, 1967; Belsley et al., 1980). In this study, we42

review statistical methods that work around this problem.43

When a data set is characterized by substantial collinearity, several problems arise.44

First, as already mentioned, parameter estimates may assume unexpected and theoret-45

ically uninterpretable values. Second, the model fit to the data will be unstable, in the46

sense that removal of just a few data points may have substantial consequences for the47

estimates of regression parameters. This holds both for linear regression and for the linear48

mixed model. Third, it can happen that no predictor on its own is significant, whereas49

all predictors jointly are successful in explaining a significant part of the variance in the50

response (Chatterjee et al., 2000).51

In what follows, we begin with an introduction to the problem of collinearity1 and52

1In the context of nonlinear regression, collinearity also rears its ugly head in the form of concurvity.

Concurvity can render models such as generalized additive (mixed) models unstable. We therefore briefly

discuss how concurvity can be assessed, and what measures the analyst might consider when concurvity

is high, in the appendix.
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its adverse consequences for the magnitude and sign of estimated coefficients. We then53

describe a data set with substantial collinearity that will serve as the test case for our54

analyses. Subsequently, we introduce and illustrate three methods for analyzing collinear55

data. The first of these is a non-parametric technique from machine learning, random56

forests. Random forests enable the analyst to assess the relative importance of predic-57

tors. The second method is supervised component generalized linear regression (SCGLR).58

SCGLR performs dimensionality reduction on the predictor space, resulting in a smaller59

set of orthogonal predictors (the supervised components). SCGLR comes with visualiza-60

tion methods for inspecting how the original predictors load on the supervised compo-61

nents, and it provides regression coefficients for the original predictors that are properly62

shrunk. The third method that we discuss is the elastic net, a regularized regression63

technique that not only shrinks coefficients, but shrinks some of these completely to zero.64

This method therefore can be used to perform variable selection. For each method, we65

introduce the general concepts, and then illustrate its use for our example data set.66

There is no fixed set of guidelines that guarantee the “correct” analysis of collinear67

data. George Box’s famous aphorism that all models are wrong but some are useful (Box,68

1976) is especially relevant with respect to models for highly collinear data. The methods69

we review in the present study therefore provide the analyst with a toolkit that we find70

useful for exploring and understanding in complementary ways to what extent, and how71

a response might be shaped by a set of collinear predictors.72

All analyses discussed in this study are documented step by step in the supplementary73

materials, to be downloaded from https://osf.io/5merb/. For these analyses, we made74

use of the statistical programming environment R (R Core Team, 2018) and specialist75

packages available for R (introduced below).76

2. Suppression and enhancement77

Suppression and enhancement occur in the linear regression model when two (or more)78

predictors for a given response Y are strongly correlated. Take, for example, an analysis79

in which response times (dependent variable Y ) in auditory lexical decision have to be80

predicted by word frequency counts in American English (predictor A) and British English81

(predictor B). Given that such frequency counts will tend to be strongly correlated,82

suppression and enhancement are likely to make the coefficients of the regression model83
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uninterpretable. To understand why this happens, first consider the case in which we fit84

two one-predictor regression models to Y ,85

Yi = β0 + βAAi + εi, εi ∼ N (0, σ), (1)

Yi = β0 + βBBi + εi, εi ∼ N (0, σ). (2)

where the β0 represent the intercepts, βA and βB denote the coefficients for predictors A

and B, and ε is a Gaussian error term. When A and B are uncorrelated and completely

orthogonal, the results of these two one-predictor models will almost completely identical

to a multivariable regression model in Y in predicted from A and B jointly:

Yi = β0 + βAAi + βBBi + εi, εi ∼ N (0, σ). (3)

In this case, the multivariable regression model has nothing to add about the effects of86

A and B that we did not already know from the two one-predictor analysis. However,87

when A and B are correlated, and not strictly orthogonal, then multiple regression comes88

into its own as the arbiter deciding which predictors should be given more (or less)89

weight. When predictors are only mildly correlated, there is little collinearity and the90

weights estimated by the multiple regression model (3) will make sense, but when strong91

collinearity is present, the resulting model will become theoretically uninterpretable.92

Following Friedman and Wall (2005), we illustrate this phenomenon by varying the93

correlation between predictors A and B, while keeping constant the correlations between94

A and Y as well as the correlations between B and Y . We simulated multiple data95

sets with 1000 observations each, using the mvrnorm function from the MASS package96

(Venables and Ripley, 2002). Y , A and B are all standard normal random variables. We97

manipulated the correlation between A and B (rAB) to range from close −1 to close to +198

in steps of 0.01. We fixed the correlation between B and Y at rBY = 0.3, but considered99

three different correlations between A and Y : rAY = −0.3, rAY = 0.0 and rAY = 0.6.100

When rAB = 0, βA is equal to rAY and βB = rBY .101

Figure 1 illustrates the consequences of varying the correlation between A and B for102

the estimates of slopes βA and βB (top panels) and the corresponding t-values (bottom103

panels). Across all panels of Figure 1, dashed lines represent βA and solid lines βB. The104

three values of rAY are listed above their respective panels.105
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Figure 1: β coefficients (top row), and t-values (bottom row) as a function of rAB, for rBY = 0.3

and varying correlations rAY (left column: -0.3, middle column: 0, right column: 0.6).

First consider the panels graphing coefficients against rAB. When rAB is zero, βA is106

-0.3 when rAY = −0.3, it is 0 when rAY = 0, and it is 0.6 when rAY = 0.6. As rBY107

is fixed at 0.3, βB is always 0.3 when rAB = 0. When rAB moves away from zero, the108

coefficients change, and the more extreme rAB becomes, the more extreme the changes109

in the coefficients are. When rAB approximates 1, we find large positive and negative110

values for both βA and βB. Which predictor receives a positive coefficient and which a111

negative depends on rAB. When rAB is shifted towards −1, coefficients are not enhanced,112

but suppressed: both βA and βB assume smaller values than they have when rAB = 0. It113

is noteworthy that βA is strongly enhanced even when rAY = 0.114

Estimates of the t-values associated with the coefficients also vary with rAB and can115

be very large for extreme positive values of rAB. This leads to false positives for βA116

when rAY = 0 and rAB is large. In other words, the model supports a significant effect117

of A although there is in fact none. False negatives arise when rAY = −0.3, rBY = 0.3,118

and rAB is close to −1. In other words, the model does not support a significant effect119

of A and B although they are in fact significantly correlated with Y . In fact, strong120

collinearity can give rise to a model that succeeds in explaining variance of the predictor,121
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without a single regressor being significant (see, e.g., Hadi, 1988; Chatterjee and Hadi,122

2012b; Friedman and Wall, 2005, for examples).123

Large coefficients with opposite sign for strongly correlated predictors are the hallmark124

of collinearity. In this case, the coefficients become difficult to interpret. For the above125

example of American and British frequency of occurrence, one frequency measure will126

reveal a coefficient with the expected negative sign, but the other frequency measure will127

emerge with a coefficient with an uninterpretable positive sign.128

When strong collinearity is present, it is important to take a step back, and to address129

the question of how the artifacts of strong collinearity are best avoided. Before introducing130

possible strategies for addressing the adverse effects of collinearity, we first introduce the131

data set that we use to illustrate these strategies, the KIEL corpus.132

3. Data set: word and segment durations in the KIEL corpus133

The KIEL corpus (Kohler, 1996; Peters, 2003) comprises quasi-spontaneous speech as well134

as speech elicited by dictation. The corpus is annotated at the word level, the segment135

level, and the prosodic level. Annotations at the segmental level were manually corrected136

and contain indicators about missing canonical segments. Prosodic annotation provides137

information about primary and secondary stress in words. The entire corpus contains138

32,460 word tokens (2,216 types), recorded from a total of 107 speakers.139

From the KIEL corpus, we extracted durations for those vowels that occur in mono-140

syllabic words and that were recorded in quasi-spontaneous speech. Of this set of vowels,141

we selected the first 10, 000 (from a total of 314 unique word types) for further analysis.142

The response variable of interest is vowel duration.143

For each vowel, we registered speaker, carrier word, and segment identity, three144

random-effect factors. We recorded stress (levels none, primary, secondary), an145

indicator variable for whether the segment is located in a word at the end of a sen-146

tence, (EndOfSentence, with levels true, false), and phonological length of the vowel147

(Vowellength, with levels long, short).148

In addition, we included SpeakingRate (number of syllables per second) and word du-149

ration (wDur). Following previous research (Jurafsky et al., 2000; Aylett and Turk, 2004;150

Bell et al., 2009; Tremblay and Tucker, 2011; Priva, 2015), we added 16 probabilities for151

segments and words from the frequencies of words and segments in the KIEL corpus. In152
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what follows, we use W to denote words, S to denote segments, target for the current unit153

(W or S), and prev and next to denote preceding and following units. The probabilities154

we considered are: the probability (relative frequency) of the preceding, current, and fol-155

lowing unit: P(Wtarget), P(Wnext), P(Wprev), P(Starget), P(Sprev), P(Snext); the156

joint probability with the preceding, or following unit: P(Wprev, Wtarget), P(Wtarget,157

Wnext), P(Sprev, Starget), P(Starget, Snext);the joint probability with both the158

preceding and following unit: P(Wprev, Wtarget, Wnext), P(Wprev, Wtarget, Wnext);159

the conditional probability given the preceding unit: P(Wtarget | Wprev), P(Starget |160

Sprev); and the conditional probabilities given the following unit: P(Wtarget | Wnext),161

P(Starget | Snext).162

To this set of continuous predictors we added a final set of covariates: phonological163

neighborhood density (NHD), the count of words identical to the target word except for one164

segment; the count of segments in a word (nSegperWord); the number of speakers using a165

word (Dispersion) (see Adelman et al., 2006; Keuleers et al., 2015, for lexical dispersion166

across texts and speakers). In recent years, more and more researchers use measures167

derived from cognitive and neural networks to predict human behavior in cognitive tasks.168

These measures, such as activation estimated with naive discriminative learning (Baayen169

et al., 2011, 2016; Milin et al., 2017), are correlated with frequency measures to vari-170

ous degrees. To increase the number of potentially correlated predictors, we added the171

activation of the word given a word’s diphones (WordActivation SmallWindow), and172

the activation of the word as provided by all diphones that occur in a five-word win-173

dow around the target word (see Tomaschek et al., 2018, for further discussion). Larger174

activations are expected to be associated with shorter durations. The total number of175

numeric predictors thus amounts to 24. There are potentially other collinear predictors176

due to the nature of how they were created. For example, conditional probabilities are177

derived from frequencies of occurrence, which is why they are collinear by design.178

Before analysis, we transformed numeric variables where necessary. As indicated by179

a Box-Cox test, the response variable was transformed by taking its square root. Several180

predictors were subjected to either a logarithmic transform, or to the root transform,181

depending on which transformation succeeded in rendering the distribution of values more182

symmetrical and with fewer outliers. For discussion of why transformations of response183

and predictor variables are necessary in the context of linear regression, see Zuur et al.184

7



●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

D
is

pe
rs

io
n

N
H

D
nS

eg
pe

rW
or

d
P

(S
ne

xt
)

P
(S

pr
ev

,S
ta

rg
et

,S
ne

xt
)

P
(S

pr
ev

,S
ta

rg
et

)
P

(S
pr

ev
)

P
(S

ta
rg

et
,S

ne
xt

)
P

(S
ta

rg
et

)
P

(S
ta

rg
et

|S
ne

xt
)

P
(S

ta
rg

et
|S

pr
ev

,S
ne

xt
)

P
(S

ta
rg

et
|S

pr
ev

)
P

(W
ne

xt
)

P
(W

pr
ev

,W
ta

rg
et

,W
ne

xt
)

P
(W

pr
ev

,W
ta

rg
et

)
P

(W
pr

ev
)

P
(W

ta
rg

et
,W

ne
xt

)
P

(W
ta

rg
et

)
P

(W
ta

rg
et

|W
ne

xt
)

P
(W

ta
rg

et
|W

pr
ev

)
S

pe
ak

in
gr

at
e

w
D

ur
W

or
dA

ct
iv

at
io

nL
ar

ge
W

in
do

w

NHD
nSegperWord

P(Snext)
P(Sprev,Starget,Snext)

P(Sprev,Starget)
P(Sprev)

P(Starget,Snext)
P(Starget)

P(Starget|Snext)
P(Starget|Sprev,Snext)

P(Starget|Sprev)
P(Wnext)

P(Wprev,Wtarget,Wnext)
P(Wprev,Wtarget)

P(Wprev)
P(Wtarget,Wnext)

P(Wtarget)
P(Wtarget|Wnext)
P(Wtarget|Wprev)

Speakingrate
wDur

WordActivationLargeWindow
WordActivationSmallWindow

Figure 2: Correlation map for numeric predictors in the KIEL corpus.

(2010); Chatterjee and Hadi (2012a); Sheather (2009).185

4. Diagnostics for collinearity186

4.1. Correlation plot187

When a linear model is fit to the segment durations, a first indication of trouble is188

that there are predictors for which the coefficients are not estimated. Furthermore, which189

predictors are inestimable depends on the order of the predictors in the model formula.190

As a first step towards a diagnosis of what is wrong, we inspect the correlations be-191

tween the predictors, using a correlation map (obtained with the corrplot package (Wei192

et al., 2017)). In Figure 2, red dots represent positive correlations, whereas blue dots193

represent negative correlations. The size of the dots is proportional to the magnitude of194

the correlation. It is clear that many predictors are correlated to some extent. There are195

especially large correlations for WordActivation SmallWindow and P(Sprev, Starget,196

Snext): r = 0.77, Dispersion and P(Wtarget): r = 0.90, nSegperWord and NHD: r =197
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-0.78, WordActivation SmallWindow and WordActivation LargeWindow: r = 0.91, and198

P(Starget | Snext) and P(Starget, Snext): r = 0.76. The problem with the correla-199

tion matrix as a diagnostic for collinearity is that although high correlations indeed point200

to a potential collinearity problem, the absence of high correlations does not guarantee201

that there is no problem (see Belsley et al., 1980, p. 92–93 for further discussion).202

4.2. Variance inflation factors203

A better diagnostic for assessing whether coefficients are poorly estimated due to

collinearity are the variance inflation factors (VIF) for the coefficients. The variance

VAR[β̂j] of an estimated coefficient β̂j for predictor j is

VAR[β̂j] =
1

1−R2
j

· σ2

(n− 1)S2
j

, (4)

where Sj denotes the standard deviation of predictor j, n is the number of data points, σ2
204

the common variance of the errors, and R2
j the value of R2 obtained from regressing the205

j-th predictor on all other remaining predictors. When predictor j is highly dependent206

on one or more other predictors, R2
j will be large, and as a consequence 1/(1 − R2

j ) will207

be large as well. If predictor j is orthogonal to the other predictors, R2
j is close to zero,208

and 1/(1−R2
j ) close to 1. The ratio 1/(1−R2

j ) is called the j-th variance inflation factor.209

One rule of thumb is that coefficients with a variance inflation factor exceeding five are210

poorly estimated and untrustworthy (Sheather, 2009). In R, variance inflation factors211

can be obtained with, e.g., the vif() function of the car package (Fox and Weisberg,212

2011). When we try to apply vif() to the above-mentioned linear model, it reports213

that it cannot do so: not all coefficients in this model are estimable. When we refit the214

model with two troublesome predictors removed (e.g., P(Wnext), P(Wprev)), we find that215

there are 13 predictors with variance inflation factors exceeding 5. For five of these, the216

variance inflation factor exceeds 10.217

A problem with variance inflation factors is that it is not clear what a meaningful218

boundary is for a low versus a high value. For instance, Chatterjee and Hadi (2012b)219

state that values exceeding 10 are diagnostic of collinearity problems (p. 250), whereas220

(Sheather, 2009) puts the boundary at 5 (p. 203). For the present data, however, it is221

clear that there is a serious collinearity problem.222

9



4.3. Condition number223

Whereas variance inflation factors are useful for finding individual predictors that

clearly suffer from collinearity, the collinearity of the full set of predictors jointly is still

not well assessed. This led Belsley et al. (1980) to propose a ‘systemic’ measure for

collinearity, called the condition number κ. To understand what κ actually assesses, we

write out the estimates of the coefficients as a function of the model matrixX (the matrix

with the predictors and a column of ones for the intercept) and the observed values of

the response y:

β̂ = (XTX)−1XTy.

The Achilles heel of the linear model is calculating the inverse of the (square) matrix224

XTX. (When all predictors are centered and scaled, XTX is the correlation matrix.)225

The inverse of a square matrix need not exist. It does not exist when there are columns226

(or rows) that are (weighted) combinations of each other. To ascertain whether a matrix227

is singular, it can be decomposed into a product of three matrices, the middle matrix of228

which is zero except possibly for the elements on its main diagonal. These elements are229

known as eigenvalues. When a matrix is singular, at least one of these eigenvalues is zero.230

For empirical data, it is unlikely that predictors will be exactly (weighted) combinations231

of each other. Typically, predictors are themselves not exact but noisy.232

Nevertheless, the more similar one or more empirical predictors are, the more XTX233

starts to resemble a singular matrix. This resemblance becomes stronger when one or234

more eigenvalues of XTX are very close to zero. As we need the reciprocals of the235

eigenvalues to calculate the inverse matrix, it is clear that eigenvalues close to zero are236

going to give rise to huge reciprocals. Such huge reciprocals make the inverse matrix, and237

hence the estimates of the coefficients, unstable.238

It turns out that the eigenvalues of XTX are the squares of the so-called singular239

values of the design matrix X (the diagonal elements of the center matrix when X itself240

is decomposed into a product of three matrices). Therefore, very small singular values for241

X are also indicative of a collinearity problem. Belsley et al. (1980) show that the ratio242

of the largest and smallest singular values, the condition number κ, is the pivotal scaling243

factor for an upper bound for the effect of small changes in the response variable on the244

magnitude of the coefficients. Likewise, it provides such a scaling factor for small changes245
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in the predictors. In other words, if κ is large, very small differences in the response or246

predictor variables have huge consequences for the estimated regression coefficients.247

For calculating κ, we start off with the matrix with predictors, we add a column of248

ones for the intercept, and then scale each column so that it has unit length. Without this249

scaling, the value of κ would depend heavily on the measurement units of the variables,250

and as a consequence, it would become useless as a general diagnostic of collinearity.251

Belsley et al. (1980) point out that predictors should not be centered (see also Belsley,252

1984, for detailed discussion): transformation of variables to Z-scores does not remove253

collinearity but makes it invisible. The singular values of the resulting matrix can be254

calculated, from which we obtain κ. All this is implemented in collin.fnc() from the255

languageR package (Baayen, 2008), which follows Belsley et al. (1980). (The kappa256

function of R does not include the intercept, and hence, even when its directive exact257

is set to TRUE, will give rise to different results.) Values of κ exceeding 15 typically258

indicate that harmful effects of collinearity will be present. Values exceeding 30 point to259

strong collinearity for which corrective action is essential. These cutoff values are based260

on experience that has accumulated over the years in data analysis (Belsley et al., 1980;261

Chatterjee and Hadi, 2012b). For the predictors in the KIEL data set, κ is no less than262

1, 809, 457, 843, 187, 094.263

4.4. Inspecting the sign264

When in doubt about the severity of collinearity and potential adverse effects of265

enhancement, it may be useful to check whether the sign of a coefficient is in accordance266

with the sign of a simple correlation of the same predictor with the response. If there is267

indeed a change of sign, it is worth investigating whether corrective measures are required.268

5. Strategies for addressing collinearity269

5.1. Common sense strategies270

When the set of predictors includes a set of variables that are theoretically strongly271

related, it makes sense to include only one in the regression analysis. By way of example,272

frequency counts based on a range of corpora will show strong correlations. When the273

nature of these corpora and the corresponding consequences for word use are not of274
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primary interest, selecting one frequency measure from the set will help bring down275

collinearity.276

Instead of selecting one measure by hand, one could alternatively orthogonalize the277

available measures using, for instance, principal component analysis, and select the first278

principal component, or the first couple of principal components, as representative for279

the full set of measures. Principal component analysis is explained in more detail in280

Section 5.3.1. Baayen et al. (2006) used this approach for 10 strongly correlated measures281

of orthographic and phonological consistency. Below, we discuss a method, supervised282

component generalized linear regression, that carries out orthogonalization in a more283

principled way.284

Sometimes it is possible to de-correlate two related predictors by selecting one pre-285

dictor and including the ratio of the first and second predictor as a new predictor. For286

instance, Baayen et al. (2006) were interested in frequency of occurrence in spoken and287

written English, and included written English as one predictor, and the ratio of written288

to spoken English as second predictor. The new predictor, which gauges the extent to289

which a word is used more often in writing than in speech, is by far not as strongly290

correlated with written frequency as the original spoken frequency measure.291

These common-sense strategies all share one disadvantage: a strong dependence on292

manual intervention. Although hand-crafting the set of predictors may be justified by293

domain knowledge, methods that minimize manual intervention are worth considering.294

We discuss three such methods below.295

One strategy that is not recommended is to reduce collinearity through residualization296

(see, e.g. Tremblay and Tucker, 2011; Priva, 2015, for applications of this strategy). A297

predictor A that is correlated with another predictor B is not entered into the analysis298

directly. Instead, A is regressed against predictor B, and the residuals of this regression299

(Aresiduals) are then entered into the analysis as a predictor instead of A. Since Aresiduals300

is orthogonal to predictor B, this reduces collinearity.301

York (2012) and Wurm and Fisicaro (2014), however, demonstrated that the statistical302

characteristics of βA and βAresiduals
are identical. By contrast, unfortunately, residualiza-303

tion can lead to an exaggeration of the statistical importance of the non-residualized304

predictor B or an overestimation of the importance of data in regions of enhancement,305

depending on magnitude and sign of the correlation between A and B. As a consequence,306
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residualization may strongly affect the results and the interpretation of a regression anal-307

ysis. In what follows, we consider strategies for analysing collinear data that do not308

require removing or orthogonalizing predictors by hand.309

5.2. Random forests310

Collinearity is a problem of the linear model and the way in which it estimates regres-311

sion coefficients. One way in which one can avoid the problems that arise in the context312

of the linear model due to collinearity is to step away from the regression framework,313

and to use instead a non-parametric method from machine learning. In what follows, we314

discuss random forests, which make use of decision trees and recursive partitioning.315

Conditional variable importance measures calculated in random forests take into ac-316

count the correlations between predictors. One issue with conditional variable impor-317

tances, however, is that they are heavy on resources. Furthermore, these measures tend318

to inflate variable importance scores for uncorrelated data (Nicodemus et al., 2010). For319

this reason, we decided to use the unconditional variable importances provided by the320

ranger package (Wright and Ziegler, 2017) for R2.321

Before discussing further details, we clarify the contexts in which this method is of use.322

When the aim of the analysis is a model with outstanding prediction accuracy, random323

forests are an excellent choice. Random forests, however, do not provide detailed insight324

in the effects of individual predictors and their interactions. What they do provide is325

an assessment of predictor importance. When interest resides primarily in the effects of326

individual predictors and their significances, random forests remain useful as a tool for327

exploratory data analysis, just like visualization.328

5.2.1. Recursive partitioning329

Random forests are based on decision trees, which use a set of binary rules to predict a330

response variable. The response variable in a decision tree can be categorical or numerical331

in nature. Recursive partitioning trees for categorical responses are known as classification332

trees, trees for numerical responses are referred to as regression trees. The dependent333

2We are thankful to Bodo Winter to pointing us to the ranger package, which outperforms alternative

R packages such as party (Hothorn et al., 2018a), partykit (Hothorn et al., 2018b), and randomForest

(Breiman et al., 2018) in terms of computational efficiency.
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variable in the current study is segment duration, which is numerical, and consequently334

the decision trees introduced here are regression trees. In the analyses that follow, we335

use the variables as transformed for regression modeling, but such transformations are336

not required for analyses based on random forests and decision trees.337

Decision trees are built through a process that is commonly referred to as recursive338

partitioning. Recursive partitioning algorithms start with the full data set, which includes339

all observations. The algorithm starts off with finding the predictor and the predictor340

value that split the data into two groups in an optimal manner. A commonly used341

splitting criterion, also used in the random forest analyses below, is the reduction in342

uncertainty (i.e., the reduction in entropy, which is also referred to as the information343

gain) about the value of the response variable (e.g., Therneau et al., 2017). Splits are344

implemented for a predictor value that reduce the uncertainty about the response variable345

the most. For each of the two subsets of the data that result from the split this process346

is repeated. The process of implementing binary splits for a branch of the tree continues347

until a stopping criterion is reached that is based on the extent to which additional splits348

improve the quality of the model fit. The model fitting procedure is concluded when the349

stopping criterion has been reached for all branches of the decision tree.350

An example of a recursive partitioning tree is shown in Figure 3, top. For ease of351

illustration, we limited this tree to a maximum depth (i.e., number of splits) of 2. The352

initial split is made on word duration (wDur), at a value of −0.51. Observations for which353

the (normalized) word duration is smaller than −0.51 are assigned to the left branch354

of the trees, whereas observations for which word duration is equal to or greater than355

−0.51 are assigned to the right branch of the tree. The second split in the left branch of356

the tree is based on the value of phonological neighborhood density (NHD), whereas the357

second split in the right branch of the tree is based on the number of segments in a word358

(nSegPerWord).359

The colored boxes provide more information about the observations in a node. The360

top value in a colored box is the mean segment durations for the observations in the361

corresponding node, whereas the bottom value in a box provides the percentage of obser-362

vations in the data set that fall under the corresponding node. Mean segment durations363

for the observations in the four terminal nodes, i.e. the nodes at the last layer of the tree,364

differ substantially, which demonstrates that the implemented splits were successful at365
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Figure 3: top: Recursive partitioning tree fit to the segment durations in the KIEL corpus data.

Colored boxes indicate mean predictor values and percentage of observations for the observations

in each node. bottom: Results of the random forest models fit to the segment durations in the

KIEL data. Optimal cross-validation performance for different numbers of trees on a coarse

grid (left panel) and on a fine grid (right panel). The dashed lines indicates the number of trees

for which the mse is minimal.

dividing the data into subsets with different segment durations.366

Random forests (Breiman, 2001) fit not one, but multiple decision trees to the data.367

The idea behind random forests is to prevent overfitting by averaging over the predictions368

of a large number of trees. To make this idea work, it is crucial to ensure that the individ-369

ual trees are not too similar. Simply fitting multiple decision trees to the complete data370

set would result in a series of identical trees. To overcome this problem, random forests371

combine two statistical concepts: bootstrap aggregating (bagging) and random predictor372

subset selection. Both of these techniques reduce the correlation between individual trees.373

Bootstrap aggregating (bagging) is a method to artificially obtain more samples than374

the data can provide. The original data set acts as a pseudo-population. From this375
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population, we take pseudo-samples that have the same size as the population and that376

are drawn from the population with replacement. As a result, a sample contains ap-377

proximately two thirds of the observations in the population, whereas one third of the378

observations is left out. The observations that are in the sample are referred to as the379

in-bag observations, whereas the observations that are not in the sample are referred to as380

the out-of-bag observations. Each tree in a random forest is fit to a different bootstrapped381

sample.382

The trees in random forest are not only fit to a subset of the observations. Also,383

each tree in a random forest is fit for a different subset of the predictor variables. For384

numerical dependent variables, a typical size of the subset of predictors that is considered385

for each tree is the number of predictors divided by 3 (Hastie et al., 2001; Strobl et al.,386

2009). The relatively small size of the subset of considered predictors ensures that the387

trees in a random forest are not too similar.388

5.2.2. Prediction and performance389

The prediction of a random forest model is defined as the average prediction of the individ-390

ual trees for the out-of-bag observations (i.e. out-of-bag predictions). The performance391

of a random forest is evaluated by comparing the average of the out-of-bag predictions392

with the observed data. The average out-of-bag prediction has less variance and thus393

suffers less from overfitting when the predictions of individual trees are less correlated.394

Both bagging and random predictor subset selection ensure that the predictions of the395

individual trees in a random forest are not too similar. Unlike individual decision trees,396

random forests therefore tend not to overfit the data and have excellent generalization397

performance.398

The interpretation of the results from a random forest are based on a measure of399

variable importance. Different measures of variable importance exist. The measure we400

use here is based on permutation tests (Breiman, 2001). To establish the importance of401

a predictor, the values for that predictor are randomly permuted. The accuracy of the402

out-of-bag predictions for the permuted predictor is then compared with the accuracy403

of the out-of-bag predictions for the original predictor. A predictor is regarded to be404

more important, the greater the difference in prediction accuracy between the original405

predictor and the permuted predictor.406
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5.2.3. Predictors and parameters for random forests407

The KIEL data set contains a number of categorical predictors. The ranger package is408

able to handle categorical variables, while the glmnet package (Friedman et al., 2018)409

that we will use below to illustrate regularized regression models is not. To be able to410

compare the variable importances of the random forest with the coefficients in regularized411

regression on a fair basis, we converted the categorical predictors in the data to numerical412

variables using one-hot encoding that converts the categorical predictors in the KIEL413

corpus to numerical variables.414

To understand how one-hot encoding works, consider the categorical predictor Stress.415

Stress has three levels: Primary, Secondary and None. We encoded the information416

in the categorical variable Stress in two numerical predictors: StressPrimary and417

StressSecondary. StressPrimary was set to 1 for words with primary stress and to418

0 otherwise. Similarly, StressSecondary was set to 1 for words with secondary stress419

and to 0 otherwise. The information for the third level of the categorical variable Stress,420

None, is implicitly encoded in StressPrimary and StressSecondary. Whenever both421

StressPrimary and StressSecondary are zero, the word has no stress. We applied422

one-hot encoding to all categorical predictors in the KIEL data set. (In linear regression423

modeling, R’s default for categorical predictors, treatment coding, automatically adds424

such one-hot encoded predictors for factorial predictors to the model matrix.)425

A crucial parameter in the ranger() function is num.trees, which determines the426

number of decision trees that should be fit. The caret package (Kuhn, 2018) for R427

provides grid search functionality for a large number of predictive models, which helps428

the user tune model parameters. To determine an appropriate value of num.trees, we429

fit a series of random forests with an increasing number of trees to the KIEL corpus data430

using the train() function of the caret package. We evaluated the prediction accuracy431

under (10-fold) cross-validation3
432

3Cross-validation is a technique to assess the accuracy of a model. The data is partitioned into a

training set on the basis of which the model is fit and a test set on the basis of which the accuracy of

the model is assessed. In 10-fold cross-validation, the model is trained on 90% of the data and tested on

the remaining 10% of the data.
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for each model with the root mean squared error (rmse, which is defined as:

RMSE =

√∑n
i=1 (ŷi − yi)

n
(5)

where ŷi and yi are the predicted and observed segment duration for observation i, re-433

spectively.434

The rmse for different numbers of trees is presented in Figure 3, bottom. The bottom435

left panel of Figure 3 shows the results of a coarse grid search, with the number of trees436

ranging from 1 to 11.5 on a log scale (i.e., from 3 to 98, 716 on a non-logged scale). The437

minimal rmse in the coarse grid search was observed for a value of 6.5 on the log scale438

(665 trees, rmse: 0.5395). We then carried out a second grid search, using numbers of439

trees near the optimal number of trees in the coarse grid search. The results of this fine440

grid search are presented in the bottom right panel of Figure 3. The minimal rmse in441

the fine grid search was observed for 700 trees (rmse: 0.5394).442

It is worth noting that highly similar rmses were observed across a wide range of443

values of num.trees. A post-hoc analysis revealed that the rmse for models with 23 or444

more trees were not significantly different from the optimal rmse. Given the fact that445

random forests tend to not overfit the data, this is a typical pattern of result in a random446

forest analysis.447

5.2.4. Variable importance448

Following the results of the grid searches, we ran the final random forest with the449

num.trees parameter set to 700. The parameter for the number of predictors that are450

considered in each tree, mtry, was set to 10. Unscaled permutation-based variables im-451

portances were calculated by setting the value of the parameter importance to “permu-452

tation” (see Nicodemus et al., 2010, for a discussion of the benefits of unscaled variable453

importances). Default values were used for all other parameters. The rmse for the out-454

of-bag predictions of the final model (0.5394) was nearly identical to the rmse of the455

same model under cross-validation.456

The variable importances for the random forest are presented in Figure 4. The variable457

with the highest variable importance is the duration of the word (wDur), unsurprisingly.458

The random forest model furthermore indicates that phonological neighborhood density459

(NDH) and the number of segments of the word (nSegperWord) are highly predictive of460
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segment duration as well. To gain further insight into predictor effects, one can plot461

the recursive partitioning tree produced by the rpart() function (cf. Figure 3, top, but462

allowing for greater tree depth).463
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Figure 4: Variable importances for the random forest model. Opaque red dots indicate non-zero

variable importances, transparent red dots represent variable importances that are zero.

Random forest variable importances provide an excellent assessment of the relative464

value of highly correlated predictors. The reason that a predictor gets a chance to show465

what it is worth, even though it is highly correlated with an even more powerful predictor,466

is that there are trees in the forest in which this more powerful predictor is not included467

among the set of predictors for that tree. In a standard recursive partitioning tree that468

considers all predictors, each split is based on the most powerful predictor available. In469

the forest of trees there are trees where the most powerful predictor is withheld, and470

hence the importance of less powerful predictors can be assessed, without the dangers of471

suppression or enhancement (see Strobl et al., 2009, for detailed discussion).472
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Random forests provide impressive prediction accuracy. Under cross-validation, a473

linear model fit to the segment durations with the 24 numerical covariates explains 50.37%474

of the variance in the durations. By contrast, a random forest based on the same set of475

predictors explains no less than 70.13% of the variance. As will become apparent below,476

none of the other methods for analyzing collinear data comes anywhere close to the477

prediction accuracy of the random forest. In the general discussion, we return to this478

finding, and discuss its possible theoretical implications.479

5.3. Supervised component generalized linear regression480
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Figure 5: S imulated data with correlated predictors (left) and the corresponding orthogonalized

predictors (right).

5.3.1. Principal components regression and SCGLR481

In multivariable regression with k observations and n predictors, an observation i is a482

point in a n-dimensional space, whose n axes are set up by the n predictors. When all483

predictors are orthogonal, all axes are necessary to define the position of observation i in484

this space. When predictors are correlated, there are empty regions in the n-dimensional485

space, and a smaller number of axes would suffice to properly locate each datapoint in486

a lower-dimensional space. The observations of collinear data sets are points in a space487

that, for all practical purposes, has a lower dimensionality than its number of predictors488

n.489
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Principal component analysis (Pearson, 1901) is a dimension reduction technique that490

finds new, orthogonal, axes for the data points, such that the first axis explains the highest491

proportion of the variance in the space of observations, the second axis explains the next492

highest proportion of the variance, and so on. For the case of n = 2, observations are493

points on a plane. For the case of n = 3, observations are points in a cube. If all494

points actually lie close to a line in the cube, the first principal component will be a new495

axis that will be close to all data points. Of the three principal components, the first496

will explain almost all of the variance. The second and third principal components are497

superfluous, explaining hardly any variance. Thus, a problem that at first sight appears498

to be a problem in a three-dimensional space has been reduced to a much simpler problem499

in a one-dimensional space. This is called dimensionality reduction.500

Principal components regression is multiple regression that uses principal components501

derived from the original predictors as regressors. Crucially, not all principal components502

should be used, otherwise collinearity is back again on the doorstep (Belsley et al., 1980).503

To make this more concrete, consider Figure 5. The scatter of points in the left504

panel indicates that predictors A and B are strongly correlated (r = 0.78). A principal505

component analysis rotates the data points anti-clockwise by approximately 130 degrees,506

resulting in the scatter in the right panel of Figure 5. Most of the variance in the data is507

now expressed along the horizontal axis, which represents the first principal component508

(PC1). The remaining variance is found on the vertical axis, which represents the second509

principal component (PC2). Both principal components are linear combinations of the510

original A and B axes. The extent to which the old axes are correlated with the new511

axes is proportional to the so-called loadings of the original variables on the principal512

components. Principal components are usually entered into a regression analysis simul-513

taneously. As we have explained above, because they are orthogonal their coefficients514

will not differ from coefficients obtained in uni-variate models. Principal components515

regression can be performed using the pls package for R.516

The goal of a principal components analysis is to reduce the dimensionality of the517

space in which the observations are points. A commonly used rule of thumb is that the518

first m components that jointly capture 95% of the variance in the data are retained519

as new axes (predictors). In a principal components regression, therefore, the c compo-520

nents that explain very small proportions of the variance are discarded, whereas k − c521
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orthogonal predictors are retained as predictors for the response, where k is the original522

number of predictors. Once a linear model has been estimated for the k − c principal523

components, the coefficients of the original predictors, given the dimension reduction, can524

be obtained. The magnitude of these coefficients will be substantially reduced compared525

to the estimates of a straightforward linear model, whenever the original predictors are526

substantially collinear.527

Supervised component generalized linear regression (SCGLR, implemented in the528

SCGLR package, Bry et al. (2013)) builds on the concepts underlying principal compo-529

nent regression, but the mathematical implementation is substantially different. For the530

analyst, the important differences are the following.531

First, SCGLR is designed such that multiple response variables (which can be any of532

Gaussian, binomial, and Poisson) can be modeled simultaneously. For the KIEL corpus,533

for instance, we could have included as further predictors the number of segment deletions534

or syllable durations, the idea being that the predictors for segment duration should also535

be relevant for understanding segment deletion and syllable duration. In the present536

survey, space restrictions limit demonstration of this aspect of SCGLR modeling to the537

supplementary materials.538

Second, unlike standard principal components regression, SCGLR orthogonalizes not539

just the predictors, but the predictors and response variables jointly. Whereas principal540

components regression finds high variance directions in the covariate space, SCGLR sets541

out to find those directions in the space of the covariates that are optimal for predicting542

the response variables. Just as in principal components analysis, the components, now543

called supervised components, are estimated step by step. The first supervised component544

optimizes a trade-off between the variance it captures in the full variable space (predictors545

and responses) and the goodness of fit of that component as sole predictor of the response.546

The second component is selected in the same manner, with the restriction that it has to547

be orthogonal to the first component. This procedure is repeated until K complementary548

and mutually independent components are obtained.549

Third, whereas in principal components regression the number of principal com-550

ponents to retain is typically based on a rule of thumb, SCGLR implements a cross-551

validation procedure to determine the optimal number of supervised components.552

Fourth, SCGLR allows for the possibility that there are predictors that do not need553
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Table 1: Coefficients of supervised components and factorial predictors in the SCGLR model.

predictor Estimate Std. Error t-value p-value

Intercept -0.321 0.019 -16.657 0.000

SC1 0.165 0.004 42.804 0.000

SC2 -0.221 0.005 -44.963 0.000

SC3 -0.162 0.005 -30.622 0.000

SC4 -0.096 0.005 -19.055 0.000

SC5 -0.098 0.006 -16.461 0.000

SC6 -0.011 0.006 -1.784 0.074

EndOfSentence 0.122 0.045 2.741 0.006

StressPrimary 0.421 0.022 18.913 0.000

StressSecondary 0.226 0.428 0.528 0.598

Vowellength 0.099 0.021 4.796 0.000

to be orthogonalized. For the present data set, such predictors could be the sex and age554

of the speaker. Both sex and age are not expected to enter into strong correlations with555

the word and segment-bound predictors.556

5.3.2. Working with SCGLR557

The steps in an SCGLR analysis are the following. First, the response variables are558

selected, and for each response variable, it is determined whether it is Gaussian, binomial,559

or Poisson. The single response variable of our working example, sDur, is a Gaussian560

response.561

Second, the predictors are grouped into two sets. One set contains the collinear predic-562

tors that require orthogonalization, and the other predictors that are not orthogonalized.563

For the KIEL data set, the 24 variables laid out in section 3 are assigned to the first set.564

The second set comprises the factorial predictors Stress (none, primary, secondary),565

EndOfSentence (true, false) and Vowellength (long, short).566

Next, the optimal number K of supervised components needs to be determined. For567

this, the SCGLR package makes available the function scglrCrossVal, which requires568

the user to specify the maximum number of components to take into account. We set569

this value to 15. As the results of cross-validation may vary from run to run, we carried570

out the cross-validation procedure 8 times, and selected the best-supported value, which571

turned out to be 6.572
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Finally, the model itself is fit with the scglr function, with the parameter K set to573

6. The model object produced is a list with several components. Of these, the gamma574

component, provides a table of coefficients, together with their standard errors and asso-575

ciated statistics (see Table 1). The first five supervised components are all well supported576

as predictors for segment duration, and the same holds for the factorial predictors.577

The summary of an scglr object generates two tables that are essential for the inter-578

pretation of the supervised components. The rho table lists the squared correlations (r2)579

of the predictors with the supervised components. The rho.pred table provides the same580

information for the response variables. The information provided by these two tables is581

merged in Table 2. The first row of this table concerns the response. The greatest r2 is582

observed for the second supervised component (SC2). The next largest r2 is listed for583

SC1. Thus, in the 6-dimensional space spanned by the 6 SCs, the plane defined by SC2584

and SC1 is the plane in which the response variable is most strongly represented. This585

plane is therefore listed in Table 2 as the ‘best plane’. The ‘best value’ is the sum of586

the r2 values for the axes of the best plane, and represents the variance in the response587

captured by the best plane. The remaining rows of Table 2 pertain to the predictors. Like588

the response, the Dispersion measure is most strongly expressed on the plane defined589

by SC1 and SC2, but for word duration (wDur) and speaking rate (Speakingrate) , the590

best plane is given by SC3 and SC4.591

Interpretation of tables such as Table 2 is facilitated by visualization. The plot method592

implemented for scglr objects produces correlation plots, examples of which are pre-593

sented in Figure 6. A correlation plot locates, by means of arrows, variables in the594

space defined by two (user-selected) supervised components. To avoid visual cluttering,595

a threshold (represented by a dashed circle) is set such that variables with a best value596

less than the threshold are not shown. The coordinates of a variable in the plane are597

the correlations r (the square roots of the values listed in Table 2) of the variable with598

the pertinent supervised components. The length of a variable’s arrow is, by Pythagoras’599

theorem, the square root of its best value. Its sign is taken from the correlation between600

a SC and the original predictor. In Figure 6, the arrows of predictors are presented in601

black, and that of the response in blue. The threshold was set at 0.5. Measures with best602

values (arrow lengths) less than 0.5, therefore, are not included in the plots.603

The left panel of Figure 6 shows that on the SC1 by SC2 plane, neighborhood density604
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Table 2: Squared correlations between predictors and supervised components.

predictor SC1 SC2 SC3 SC4 SC5 SC6 best plane best value

sDur 0.330 0.361 0.199 0.059 0.051 0.001 1/2 0.690

Dispersion 0.35 0.40 0.01 0.00 0.06 0.00 1/2 0.751

wDur 0.12 0.01 0.43 0.22 0.02 0.01 3/4 0.656

Speakingrate 0.06 0.02 0.14 0.32 0.10 0.02 3/4 0.454

WordActivation LargeWindow 0.68 0.00 0.05 0.01 0.11 0.00 1/5 0.791

P(Wnext) 0.01 0.04 0.20 0.02 0.01 0.57 3/6 0.777

NHD 0.01 0.69 0.08 0.04 0.00 0.03 2/3 0.764

P(Wtarget) 0.49 0.26 0.01 0.00 0.05 0.00 1/2 0.751

WordActivation SmallWindow 0.66 0.00 0.08 0.04 0.08 0.01 1/5 0.743

nSegperWord 0.01 0.51 0.21 0.07 0.00 0.03 2/3 0.720

P(Sprev, Starget, Snext) 0.56 0.03 0.11 0.09 0.00 0.00 1/3 0.670

P(Wprev) 0.00 0.00 0.13 0.33 0.00 0.28 4/6 0.608

P(Starget|Snext) 0.31 0.00 0.01 0.11 0.28 0.00 1/5 0.586

P(Starget|Sprev, Snext) 0.36 0.00 0.16 0.00 0.20 0.01 1/5 0.561

P(Starget, Snext) 0.43 0.00 0.01 0.12 0.01 0.00 1/4 0.557

P(Starget) 0.09 0.27 0.06 0.00 0.25 0.00 2/5 0.529

P(Starget|Sprev) 0.07 0.18 0.32 0.05 0.06 0.00 2/3 0.499

P(Snext) 0.01 0.03 0.00 0.00 0.47 0.01 2/5 0.497

P(Wprev,Wtarget,Wnext) 0.11 0.06 0.21 0.27 0.01 0.01 3/4 0.483

P(Wtarget|Wnext) 0.24 0.01 0.08 0.01 0.04 0.20 1/6 0.440

P(Sprev, Starget) 0.24 0.19 0.09 0.02 0.02 0.00 1/2 0.430

P(Wprev, Wtarget) 0.17 0.01 0.15 0.24 0.02 0.04 1/4 0.406

P(Wtarget|Wprev) 0.21 0.00 0.00 0.04 0.01 0.19 1/6 0.399

P(Wtarget, Wnext) 0.18 0.02 0.06 0.10 0.02 0.20 1/6 0.374

P(Sprev) 0.07 0.00 0.11 0.16 0.01 0.00 3/4 0.270

(NHD) and word length (nSegperWord) align, with opposite sign, with SC2. Several pre-605

dictors (P(Sprev, Starget, Snext), WordActivation SmallWindow, WordActivation606

LargeWindow, P(Starget | Sprev, Snext), P(Starget, Snext)) align with PC1. In607

the (SC1, SC2) plane, these predictors are orthogonal to word length and neighbor-608

hood density. A third group of predictors, including P(Wtarget) and P(Starget), are609

positioned between the axes, with medium correlations on both axes, instead of large610

correlations with either SC1 or SC2.611

In the (SC1, SC2) plane, the response, represented by the blue arrow, emerges as612
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Figure 6: Correlation plots for predictors and response in the planes defined by supervised

components SC1 and SC2 (left) and SC3 and SC4 (right). Measures with square root best

values less than 0.5 (which fall within the dashed circle) are not shown. The response variable

is shown in blue.

positively correlated with neighborhood density (NHD) and negatively correlated with613

word length. It is also negatively correlated with the predictors aligning with SC1, but614

more weakly. In this plane, the response is roughly orthogonal to the third group of615

predictors.616

The right panel of Figure 6 presents the plane spanned by the third and fourth su-617

pervised components. In this plane, the response shows strong positive correlations with618

word length and word duration, and a strong negative correlation with speaking rate.619

Apart from P(Starget|Sprev), other predictors that are well expressed in this plane are620

almost completely orthogonal to the response.621

Considered jointly, the left and right panels of Figure 6 show that the orthogonalized622

space constructed by scglr succeeds to a considerable degree in allocating different kinds623

of variables to different subspaces. Durational measures (speaking rate, word duration)624

are dominant in the (SC3, SC4) plane, whereas a host of probability measures are dom-625

inant in the (SC1, SC2) plane. Furthermore, predictors that are well aligned with the626

response, either positively or negatively, such as neighborhood density and word length627

in (SC1, SC2), and word length, word duration and speaking rate in (SC3, SC4) may be628

expected to be strong predictors.629
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Figure 7: Coefficients for the predictors estimates by the SCGLR (blue) and by a least squares

regression model (red). The SCGLR substantially shrinks many of the large coefficients of the

regression model towards zero.

For assessing the strength of predictors, SCGLR makes available a table with the630

coefficients of the original predictors, which it derives from reduced space of supervised631

components. These coefficients reflect the cumulative support from all the dimensions632

of the (reduced) space of orthogonal supervised components. Figure 7 presents these633

coefficients in blue, together with the corresponding coefficients estimated by a standard634

linear regression model. Many of the large coefficients of the ordinary least squares re-635

gression have been shrunk towards zero in the SCGLR. For instance, WordActivation636

LargeWindow has a negative coefficient, whereas WordActivation SmallWindow has a637

positive coefficient in ordinary least squares regression. By contrast, the coefficients for638

both predictors are shrunk towards zero in the SCGLR. Likewise P(Sprev, Starget)639

and P(Starget | Sprev) have large coefficients with opposite signs in least squares re-640

gression, but substantially reduced positive coefficients in the SCGLR model.641

In other words, the coefficients of the linear model have undergone ‘regularization’: the642
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adverse effects of enhancement have been removed. This will be explained in more detail643

below in Section 5.4.1. Estimates of uncertainty about the coefficients of the predictors644

are not available after regularization, however. It is only for the supervised components645

that standard errors and p-values can be derived.646

5.3.3. Advantages and disadvantages of SCGLR647

The squared correlation of the model predictions with the response are 0.428 for SCGLR648

and 0.504 for the standard regression model. When prediction accuracy is of primary649

importance, SCGLR is therefore a suboptimal choice compared to random forests.650

What SCGLR does provide is insight into the magnitude and sign of the shrunk651

predictors. Here, it offers an important advantage over principal component regression.652

Recall that in contrast to principal components regression, which is designed to find high653

variance directions in the space of the predictors, SCGLR aims to find dimensions that654

are optimal for predicting the response. These different design principles enable SCGLR655

to better distinguish which of a set of correlated predictors are actually predictive for the656

response. We illustrate this for two highly correlated standard normal predictors, A and657

B and a dependent variable Y , for which the correlation between A and Y , rAY , is 0.5, and658

further rBY = 0, and rAB = 0.8. Analogous to the cases illustrated in Figure 1, a standard659

regression model will result enhancement, estimating a slope of -1.1 for B even though B660

is uncorrelated with Y . Orthogonalization with principal components analysis results in661

one predictor, the first principal component, that has loadings of 0.71 with both A and662

B. Back-transformed coefficients using the pcr function from the pls package (Mevik663

et al., 2018) are 0.14 for both A and B. In other words, the PCA regression does not664

detect that B is not predictive for Y . However, SCGLR performs much better, with665

back-transformed coefficients for A and B of 0.42 and 0.05 respectively, a much improved666

approximation of the actual correlations 0.5 and 0.667

5.4. Regression with the elastic net668

The elastic net (Zou and Hastie, 2005) is a regression technique that addresses collinear-669

ity by penalizing overly large β estimates. In this way and unlike in SCGLR, highly670

collinear predictors may be pruned completely from the data. The elastic net combines671

the ideas behind two other regularization techniques: the lasso (Tibshirani, 1996) and672
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ridge regression (also known as Tikhonov regularization; Hoerl, 1962; Hoerl and Kennard,673

1970a,b).674

Both ridge regression and the lasso penalize non-zero β coefficients in an attempt675

to improve generalization performance. Ridge regression shrinks non-zero β coefficients676

towards zero, but never to exactly zero. By contrast, the lasso shrinks β coefficients of677

variables with limited predictor power to exactly zero. The lasso, therefore, allows for678

the selection of a set of the most predictive variables. The selection of a set of highly679

predictive variables is referred to in the machine learning and data mining literature as680

variable selection, predictor selection, or feature selection.681

5.4.1. Regularization682

For a proper understanding of regularized regression it is important to understand how

β coefficients are estimated in standard linear regression. Standard linear regression

models are least squares regression models, which minimize the sum of the squares of the

residuals, commonly referred to as the residual sum of squares (henceforth rss). The rss

is defined as:

RSS =
n∑

i=1

(
yi −

(
β0 +

p∑
j=1

βjxij
))2

, (6)

where n is the number of observations, p is the number of predictors, y is the response683

variable, and xij is the value of predictor j for observation i. The term yi−β0+
∑p

j=1 βjxij684

represents the difference between the predicted and the observed values (equivalent to ε685

in Equation 3).686

The rss is small when the squared differences between the observed values (y) and

the predicted values (β0 +
∑p

j=1 βjxij) are small. Minimization of the rss results in a

high-quality fit to the data the model was fit to, but at the cost of suppression and

enhancement for collinear data. Regularized regression, instead of minimizing the rss,

minimizes the rss plus a penalty term that makes it costly to have large or many non-zero

β coefficients. The term that is minimized in the elastic net is:

RSS + λ

p∑
j=1

(
(1− α)β2

j + α|βj|
)
. (7)

The parameter λ determines the strength of the penalty imposed on non-zero β coeffi-687

cients. As can be seen in Equation 7, both the absolute values of the coefficients (|β|)688

and the squared values of the coefficients (β2) are penalized. The relative weight of the689
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penalties on the absolute values of the coefficients and the squared values of the coeffi-690

cients is set by the parameter α. The setting of α determines the number of non-zero691

coefficients in the model, with higher values of α leading to fewer non-zero coefficients.692

The parameter α thus modulates the extent to which variable selection is performed.693

When α = 1, the model imposes the lasso penalty, and when α = 0, the ridge penalty is694

used.695

5.4.2. Data preparation696

An implementation of the elastic net for R is available in the glmnet package (Friedman697

et al., 2010, 2018). Before we can run an elastic net model on the KIEL corpus data,698

we need to prepare the data for analysis with this package. The glmnet package does699

not support categorical predictors. We therefore converted categorical predictors in the700

KIEL corpus to numerical variables using one-hot encoding, as we did for the random701

forest analysis in section 5.2.702

Estimates of the β coefficients are sensitive to the scale of predictors. A change in703

the scale of a predictor leads to an equivalent change in the scale of the β estimate, but704

does not influence the rss of a regression model. By contrast, since the penalty term705

in regularized regression models takes into account β coefficients, it is sensitive to the706

scale of predictors. The sensitivity of the penalty term to the scale of predictors has seri-707

ous consequences for the estimation of the β coefficients in regularized regression models708

because coefficients for predictors with larger scales are penalized more heavily than co-709

efficients for predictors with smaller scales. As a result, regularized regression models are710

biased towards predictors with smaller scales. To prevent regularized regression models711

from being biased towards predictors with smaller scales, the predictors should be on the712

same scale. One way to ensure that predictors are on the same scale is standardization,713

which is enabled by default in the glmnet function.714

5.4.3. Estimation of parameters715

Optimal values of α and λ can be obtained with a grid search. Given a value for α, the716

glmnet function will select an optimal value for λ. By letting α range over a sequence717

of values between 0 and 1, the optimal values of α and λ can be found. To avoid718

overfitting, we made use of 10-fold cross-validation, using the cv.glmnet() function with719

the number of folds n set to 10, and using the mean squared error (mse), i.e. the average720
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of the squared differences between the model predictions and the observed data, as an721

index of generalization performance. The mses reported below are average values of the722

mean squared error across the 10 folds.723

Figure 8, top left, shows the cross-validation performance of the elastic net model for724

different values of α. For each α, the cross-validation score of the best model across 100725

values of λ is presented. The mse of the best model for α = 0 (which amounts to the726

ridge penalty), for instance, is 0.484. Error bars represent one standard error confidence727

intervals. As performance of the elastic net is highly similar for different values of the728

α, apparently, for the KIEL data set, the influence of the balance between the squared729

and absolute values of the coefficients on the performance of the model for unseen data730

is minimal. Nonetheless, since we have to select a value of α, we chose α = 0.7, as this731

value yielded the lowest mse of 0.480.732

The center left panel of Figure 8 demonstrates how the mse for α = 0.7 varies with733

λ under 10-fold cross-validation. To increase readability, λ values are plotted on the734

log scale, which increases the relative distance between small values of λ selected by735

the cv.glmnet() function. The cross-validation performance of the elastic net model is736

optimal for the smallest value of λ that we inspected: λ = 0.000472 (mse = 0.480). As λ737

approaches zero, the contribution of the penalty term to the estimate of the coefficients738

approaches zero as well. As a consequence, the estimated coefficients for small values of739

λ approach the least squares estimates of the coefficients. The fact that cross-validation740

performance of the elastic net is optimal for a very small value of λ indicates that a least741

squares solution may generalize well for the current data.742

For reasons of interpretability, we increase λ beyond its optimal value to enforce743

regularization, as larger values of λ result in a smaller number of non-zero coefficients.744

The key question is how much predictive accuracy we are willing to sacrifice for a more745

interpretable model. A common strategy is to choose the largest value of λ for which746

the mse is within one standard error of the minimum mse (Breiman et al., 1984; Hastie747

et al., 2001). For the current model, this approach would lead to fixing λ at 0.0162 (log λ748

= -4.124). For this value of λ, however, no less than 19 predictors still have non-zero749

coefficients.750

Instead of using the one-standard error rule, we therefore placed a threshold on the

percentage by which we allow the mse of a model to be higher than the minimum mse.
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Figure 8: left: Results of the elastic net models fit to the segment durations in the KIEL data.

Top panel: optimal cross-validation performance for different values of the tuning parameter α.

The dashed line indicates the value of α for which the mse is minimal (α = 0.7) across all mse

values. Middle panel: cross-validation performance of the elastic net model with α = 0.7 for

different (logged) values of the penalty parameter λ. The dashed lines indicate the value of λ for

which the mse is minimal (λ = 0.00047, log λ = −7.659, mse = 0.480) and the largest value of

λ for which the increase in mse as compared to the mse for the optimal value of λ is no greater

than 5% (λ = 0.0494, log λ = −3.007, mse = 0.504). Bottom panel: coefficient estimates for

the elastic net model with α = 0.7 as a function of λ. The dashed line indicates the largest

value of λ for which the increase in mse as compared to the mse for the optimal value of λ is

no greater than 5% (λ = 0.0494, log λ = −3.007). right: Coefficient estimates for the elastic

net model (α = 0.7, λ = 0.0494). Opaque blue dots indicate non-zero coefficients, transparent

blue dots represent coefficients shrunk to zero.
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The optimal value for the threshold depends on the relative importance we would like to

place on predictive accuracy versus variable selection. Higher threshold values will lead

to more variable selection, but less predictive power. We set the threshold to a relatively

conservative value of 5%. The greatest value of λ for which the increase in mse is smaller

than or equal to 5% is 0.0494 (log λ = -3.007, mse = 0.504, increase in mse = 4.94%).

This allows us to update the function that regularizes the regression model to:

RSS + 0.0494

p∑
j=1

(
0.3 ∗ β2

j + 0.7 ∗ |βj|
)
, (8)

where j is the number of predictors.751

Figure 8, bottom left, shows how the magnitude of the 24 coefficients is shrunk to-752

wards zero as λ is increased. Coefficients that for λ = 0.0494 (log λ = -3.007) and α = 0.7753

are not completely shrunk to zero are shown in blue, and the coefficients that are pe-754

nalized to zero are shown in gray. For extremely small values of λ, the estimates of755

the coefficients approximate the least squares estimates of the predictors: no predictor756

selection is performed. For very large values of λ, the penalty term is very large and all757

coefficients are shrunk to zero. The coefficients for the selected value of λ are located on758

the dashed line in Figure 8, bottom left. The right panel of Figure 8 presents the same759

shrunk coefficients in a dotplot, non-zero coefficients are represented by opaque blue dots760

and coefficients that are zero are represented by transparent blue dots. A total of 15 out761

of 28 coefficients were shrunk to zero.762

Several predictors show the expected pattern of results: Segment durations (nSegperWord),763

for instance, are substantially shorter for words with more segments (Altmann, 1980) and764

greater conditional probability P(Wtarget | Wnext) of the word (Bell et al., 2009). By765

contrast, longer word durations (wDur), primary word stress (StressPrimary, Moon and766

Lindblom (1994)), and greater phonological neighborhood density (NHD) lead to longer767

segment durations. The direction of NHD is in line with findings by Scarborough (2003)768

and Baese-Berk and Goldrick (2009) who report enhancement of a segment’s acoustic769

signal in words with greater NHD, but is at odds with recent findings by Gahl and Strand770

(2016), who reported shorter word durations for greater NHD.771

Accurate standard errors for regularized regression models are not available (see Goe-772

man, 2010). It is therefore advisable to refrain from reporting p-values for regularized773

regression models. Since cross-validated regularized regression models separate the pre-774

33



Table 3: Estimates of coefficient provided by the elastic net and by a least squares regression

model fit to the reduced data set that contains only predictors with non-zero coefficients in

the elastic net. Standard errors (S.E.), t-values and p-values are reported for the coefficients

estimates of the least squares regression model.

term elastic net β β S.E. t-value p-value

nSegperWord -0.216 -0.269 0.016 -16.972 < 0.001

P(Wtarget | Wnext) -0.083 -0.108 0.010 -11.324 < 0.001

P(Starget, Snext) -0.049 -0.057 0.008 -7.292 < 0.001

P(Sprev, Starget, Snext) -0.027 -0.032 0.010 -3.336 0.001

Speakingrate -0.026 -0.046 0.007 -6.514 < 0.001

P(Snext) -0.004 -0.023 0.007 -3.183 0.001

P(Wtarget, Wnext) -0.001 -0.022 0.007 -3.449 0.001

StressSecondary 0.000 0.276 0.406 0.679 0.497

P(Wprev, Wtarget) 0.002 0.033 0.008 4.176 < 0.001

P(Wprev) 0.008 0.014 0.009 1.467 0.142

P(Starget | Sprev) 0.015 0.032 0.007 4.304 < 0.001

StressPrimary 0.129 0.368 0.020 17.980 < 0.001

NHD 0.211 0.237 0.012 19.143 < 0.001

wDur 0.603 0.650 0.011 58.616 < 0.001

dictors into effective predictors (with non-zero coefficients) on the one hand, and in-775

effective predictors (with zero-coefficients) on the other hand, the selection of effective776

predictors replaces variable selection based on p-values and some (relatively arbitrary)777

α-level.778

It is of course possible to fit an unpenalized regression model with only those predictors779

that have non-zero coefficients in the regularized regression model. The coefficients of780

such a least squares regression model on the segment durations in the KIEL corpus are781

presented in Table 3, which also lists the corresponding values given by the elastic net.782

The two sets of predictors are similar, with the same signs, and a Pearson correlation of783

r = 0.913. There is only one coefficient, that for P(WPrev), that is retained by the elastic784

net without being significant according to the unpenalized regression. Although for the785

unpenalized model all variance inflation factors are well below 5, the condition number is786

still high: 20.22. In this light, it is not surprising that the (absolute) magnitudes of the787

coefficients of the elastic net are smaller than those of the unpenalized regression, which788
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Table 4: Lower triangle of the correlation matrix for the relative influences according to the

elastic net, supervised component generalized linear regression (SCGLR), the random forest,

and least squares regression.

elastic net SCGLR least squares

SCGLR 0.565

least squares 0.934 0.717

random forest 0.965 0.413 0.861

are, on average, 0.049 and 0.155 respectively. The penalization implemented in the elastic789

net protects the estimates for the coefficients against collinearity-induced enhancement.790

6. Discussion791

Random forests, supervised component generalized linear regression, and the elastic net792

assess collinear data in very different ways. This raises the question of how results ob-793

tained with these statistical techniques compare.794

To address this question, we need appropriate measures of the relative influence of795

a predictor. For the random forest analysis, we defined the relative influence of a pre-796

dictor as its variable importance divided by the sum of the variable importances for all797

predictors. For the regression models, the relative influence of a predictor was defined798

as the absolute value of its coefficient divided by the sum of the absolute values of the799

coefficients of all predictors. For each of the three models, the relative influence of the800

predictors sums up to 1.801

Figure 9 presents the relative influence of the predictors according to the elastic net802

(blue dots), according to the SCGLR (green dots), according to the random forest (red803

dots), and according to the least squares regression (yellow dots). The vertical axis804

shows the predictors in the KIEL data, in descending order of mean relative influence805

in the four models. As can be seen in Figure 9, the most important predictors have806

substantial relative influences according to all four modeling techniques. Similarly, the807

least important predictors have negligible relative influences across models.808

Further information about the similarity of the relative influence of the predictors in809

the different models is presented in Table 4, which lists the correlations between the rel-810

ative influences of the predictors across the four models. Relative influences of predictors811
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Figure 9: Relative influence of the predictors according to the elastic net (blue dots), the SCGLR

(green dots), least squares regression (yellow dots), and the random forest (red dots).

are highly similar for the elastic net, least squares regression, and the random forest (all812

r > 0.86). The results of the random forest thus strongly converge with the results of two813

of the three regression techniques. The relative influences in the SCGLR are less similar814

to the relative influences in the other models (all r < 0.72, minimum r = 0.413). In815

part, this is due to our decision not to shrink factorial predictors when we fit the SCGLR816

model.817

Prediction accuracy also differs substantially across models: the squared correlation818

of predicted and observed segment durations are 0.428 for SCGLR, 0.481 for the elastic819

net, 0.504 for the linear model, and 0.701 for the random forest. The low value of R2 for820

SCGLR is unsurprising, as this model works with only 10 parameters, whereas the elastic821
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retains 14 parameters, and the unpenalized linear model has no less than 28 parameters822

at its disposal (excluding the intercept).823

The remarkable accuracy of the random forest is due to several factors. First, it is not824

assumed a-priori that effects of predictors are linear. Second, for SCGLR and the elastic825

net, we considered main-effect models only, as interactions between numeric predictors826

are best addressed with the generalized additive model (see Wieling, this issue), and not827

with the (highly constraining) multiplicative interaction available to the linear model.828

Conditional inference trees and random forests, however, are able to capture complex829

interactions involving many predictors. Third, random forests exploit the strengths of all830

predictors.831

Thus, the choice of method will depend on the goal of the analysis. If this goal832

is prediction accuracy, the random forest is by far the best choice. If the goal is to833

understand the effects of predictors through the sign and magnitude of their slopes in a834

linear model, the elastic net conveniently weeds out insignificant predictors and provides835

estimates for the remaining coefficients that are properly shrunk.836

SCGLR is an informative option when the goal is to better understand the high-837

dimensional space in which response and predictors are defined, and the joint effect of838

clusters of predictors on the response is of theoretical interest. Especially for studies839

in which the predictors are themselves not free of error and are best understood as840

contributing imperfect probes of the locations of data points in a high-dimensional space,841

SCGLR comes into its own.842

To illustrate this point, consider the relative influence of word duration (wDur), num-

ber of segments (nSegperWord), and speaking rate (Speakingrate) in Figure 9. The

elastic net assigns word duration the greatest relative influence, with number of segments

as runner up. Speaking rate, by contrast, has a small relative influence that is much

reduced compared to that of number of segments. Theoretically, this pattern is puzzling,

as one would expect speaking rate to be the causal factor driving word duration. Fur-

thermore, since the number of segments in a word is a poor man’s substitute for word

duration, it is also worrisome that the elastic net values number of segments so much over

speaking rate. The relative influences of these predictors according to SCGLR, by con-

trast, are more intuitive. The relative influence of word duration is muted compared to

unpenalized regression, instead of enhanced, as in the elastic net. Furthermore, speaking
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rate is accorded a much higher relative influence that exceeds that of number of segments.

Because SCGLR has discovered that these three predictors are strongly represented in

the (SC3, SC4) plane (see Figure 6), where they align with the response, it treats them

similarly — the coefficients for SC3 and SC4 will give the three predictors the same boost

(modulo their individual loadings on the SCs). As a result, their relative influences are

more similar to each other. The reason that the elastic net generates very high relative

influences for word duration and number of segments is that the penalty

λ

p∑
j=1

(
(1− α)β2

j + α|βj|
)
.

in equation (7) can be kept low by substantially penalizing many intermediate coefficients843

and only mildly penalizing a few extreme coefficients. Importantly, the way the penalty844

is set up has no intrinsic value for linguistic theory, it is just a way to let fewer predictors845

do more work in such a way that prediction accuracy is optimized. The result is — indeed846

— a model with optimized prediction accuracy, but such a model may not be optimal847

from a theoretical perspective.848

The data set with which we illustrated strategies for the analysis of collinear data849

includes information on the speaker, a predictor that within the general framework of850

mixed models would be included as a random-effect factor. This raises the question of851

how to adapt the three strategies discussed above when random-effect factors need to be852

taken into account.853

Our experience with random forests is that, when participants are included into the854

term, partitions are made almost if not totally exclusively on subsets of participants,855

typically the largest source of variance. For random-effect factors with many factor levels,856

the combinatorics of working through possible partitions typically are too demanding for857

conditional inference trees and random forests to be estimable.858

To our knowledge, there is no version of the elastic net that allows for the inclusion of859

random effects as in the linear mixed model (LMM Bates et al., 2014) and the generalized860

additive mixed model (GAMM Wood, 2006). It is possible to one-hot encode individ-861

ual participants; the mechanism of penalization will ensure that the random effects for862

participants will be shrunk.863

Principal components regression is easy to extend to the LMM and GAMM frame-864

works. For instance, a set of collinear predictors bound to items can be orthogonalized865
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using principal components analysis, and pertinent principal components can then be866

used as predictors for the LMM or GAMM. For fully crossed mixed designs, SCGLR867

offers the possibility of bringing together subject responses into a multivariate response868

matrix, to be predicted from the (collinear) set of item-bound predictors. Unlike princi-869

pal components regression, which orthogonalizes just the space of predictors, SCGLR will870

search for those directions in the space of the covariates that are optimal for predicting871

the responses of all of the subjects jointly. The resulting supervised components can, if872

required, be extracted from the model and used as predictors within a LMM or a GAMM.873

From the preceding discussion, it will be clear that there are no hard and fast rules874

for the analysis of multivariate data with substantial collinearity.875

Each of the statistical methods that we have reviewed has its advantages and dis-876

advantages, and the choice of a method will depend, to a large extent, on the goals of877

the analysis. Regression models tend to be well-interpretable, but can be much less ac-878

curate than random forests. By contrast, random forests tend to provide surprisingly879

good predictions, but are more like a black box that does not allow inspection of how880

predictors work together to produce these good predictions. Even when individual trees881

are inspected, the number of interactions discovered by the tree can be overwhelming.882

In addition, Important limitations of the regression-based methods is that effects are883

supposed to be linear, and that interactions of numeric predictors cannot be incorporated884

in a principled way. The generalized additive model (see Wieling, this volume) does not885

have these limitations. Unfortunately, the regression methods that we have surveyed are886

limited to linear (or linearizable) relations between response and predictors.887

Furthermore, in the nonlinear world, the problem of collinearity resurfaces in the more888

general form of concurvity. Concurvity can lead to similar problems of interpretation,889

and it can render model estimates unstable. Concurvity occurs when one smooth term890

in the model can be approximated by other smooths in the model. This can happen, for891

instance, if a smooth of time is included together with further smooths for other time-892

varying covariates. Appendix A provides further information on how concurvity can be893

assessed, and how one might proceed if substantial concurvity in the model is detected.894

We conclude with a reflection on the application of statistical analyses. In the context895

of confirmatory inference for collinear data, with as goal establishing whether a particular896

covariate is significant, the elastic net seems a good choice. If the covariate is not shrunk897
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to zero, it can be accepted as supported, possibly in combination with further support898

from a least squares regression that discards all predictors that have been shrunk to zero899

by the net. For exploratory data analysis, all methods surveyed above are useful. The900

multiple testing method of Goeman and Solari (2011); Meijer and Goeman (2015), which901

is designed specifically for exploratory data analysis of collinear data, is an excellent902

companion to SCGLR.903
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Appendix A: Concurvity1050

For the analysis techniques in the main text we assumed that the effects of covariates1051

are linear. To relax the linearity assumption, we exchange (regularized) regression mod-1052

eling by regression with the generalized additive model (see Wieling, this volume, for an1053

introduction). In the nonlinear world, the problem of collinearity resurfaces in the more1054

general form of concurvity. Concurvity can lead to similar problems of interpretation,1055

and can make model estimates to some extent unstable. Concurvity occurs when one1056

smooth term in the model can be approximated closely by other smooths in the model.1057

The mgcv package provides a function concurvity, that calculates several related1058

indices that all range between 0 and 1. The closer the concurvity index for a smooth1059

is to 1, the greater the risk of a lack of identifiability of a clear estimate. The indices1060

are all based on a decomposition of a given smooth f into two parts, a part u that is1061

unique to that smooth’s space, and a part g that lies completely in the space of one or1062

more other smooths. The indices evaluate how g compares to f . In what follows, we1063

consider the index that is the ratio of the squared Euclidean lengths of the vectors of f1064

45



●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

ob
se

rv
ed

 c
on

cu
rv

ity

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

s(
S

pe
ak

in
gr

at
e)

s(
N

H
D

)

s(
w

D
ur

)

s(
P

_W
ta

rg
et

IW
ne

xt
)

s(
P

_S
ta

rg
et

IS
ne

xt
)

s(
W

.ID
)

s(
S

.ID
)

s(
S

ub
j.I

D
)

m1
m2
m3
m4

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

wDur

pa
rt

ia
l e

ffe
ct

−3 −2 −1 0 1

−
2

−
1

0
1

P_WtargetIWnext

pa
rt

ia
l e

ffe
ct

Figure 10: Observed concurvity for models m1 (blue), m2 (dark green), m3 (black) and m4 (red),

left panel, and the nonlinear effects of word duration and P(Wtarget | Wnext) (right panel).

and g when evaluated at the observed values of the covariates. This measure is possibly1065

somewhat over-optimistic, for more pessimistic measures, the reader is referred to the1066

documentation of the concurvity function.1067

We illustrate how concurvity can be diagnosed and addressed by fitting a generalized1068

additive mixed model to the segment durations in the KIEL corpus. We include ran-1069

dom intercepts for speaker, word, and segment, and the top seven best predictors that1070

emerged from the analyses in the main text: Speakingrate, nSegperWord, NHD, wDur,1071

Stress, P(Wtarget | Wnext), and P(Starget | Snext) (see Figure 9). With the ex-1072

ception of nSegperWord, all numerical variables were modeled with thin plate regression1073

spline smooths. The left panel of Figure 10 presents four GAM models with different sets1074

of predictors. Model m1 (blue) includes all predictors, whereas model m4 (red) includes1075

only two random effect factors, speaker and word, and only two smooths terms (wDur1076
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and (P(Wtarget | Wnext)). Models m2 and m3 are intermediate between m1 and m4 with1077

respect to the predictors included. The left panel of Figure 10 presents the observed1078

concurvity for each model. For the full model (m1), the random intercepts for segment1079

emerge as completely unidentifiable. This model is clearly overspecified. But the neigh-1080

borhood density measure (NHD) and the probability P(Starget | Snext) also are not well1081

identifiable — they contribute little that is not already contributed by other predictors.1082

Model m2 removes the by-segment random intercepts, but this does little to alleviate the1083

problems with NHD and P(Starget | Snext). Model m3 removes these two predictors1084

from the model specification, and model m4 removes Speakingrate, which was not well1085

supported, thereby reducing the concurvity for wDur (which is strongly correlated with1086

speaking rate). The right panel presents the nonlinear effects of wDur and (P(Wtarget |1087

Wnext) in model m4; both predictors show muted effects for higher values, especially so1088

for word duration.1089

In summary, when effects are nonlinear, concurvity may make it impossible to identify1090

the unique contributions of predictors, even when model summaries suggest predictors1091

are well supported. The problem is not that the requested model cannot be fit, or that1092

the requested model does not improve on simpler models. Rather, the problem is that1093

especially in the nonlinear world, the unique contribution of strongly correlated predictors1094

will often not be separable. In this case, to further understanding without overfitting the1095

data, while at the same time complying with Occam’s razor, it is best to keep the model1096

simple by removing predictors with high concurvity indices.1097

In the context of confirmatory data analysis where model m1 was the planned model,1098

the removal of unidentifiable predictors would be part of model criticism, with as aim to1099

obtain more reliable estimates of the effects (see Baayen et al. (2017), for discussion of1100

the importance of model criticism in the context of confirmatory data analysis).1101

47


